Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight subjects

Abstract

BACKGROUND: Obesity represents a heterogeneous group of disorders associated with broad spectrum of metabolic and endocrine abnormalities. The metabolic changes in obesity may also concern the efficacy of mitochondrial system of energy provision. The aim of our study was to analyse activities of mitochondrial enzymes cytochrome c oxidase (COX) and citrate synthase (CS) in isolated lymphocytes of obese and normal-weight subjects.

RESULTS: In the group of 304 non-obese controls, differences between men and women were found neither in the COX and CS activities nor in the COX/CS ratio in isolated lymphocytes. The activity of COX did not change even with age, whereas the activity of CS decreased significantly resulting in age-dependent increase of the COX/CS ratio (P<0.01). In the group of 60 obese patients aged 17–75 y, the COX activity was 1.2-fold higher (P<0.01) and the CS activity was 1.3-fold lower (P<0.01) compared to 151 non-obese healthy age-matched controls. Consequently, the COX/CS ratio became 1.7-fold higher (P<0.01) in the obese patients compared to the non-obese population, which indicates that both the absolute and relative oxidative capacity are increased.

CONCLUSION: Isolated lymphocytes from peripheral blood contribute very little to the overall metabolic turnover, but they may serve as easily available marker cells for studying the changes of mitochondrial energy converting systems in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Katyare SS, Howland JL . Enhanced oxidative metabolism in liver mitochondria from genetically obese mice Arch Biochem Biophys 1978 188: 15–20.

    Article  CAS  PubMed  Google Scholar 

  2. Brady LJ, Brady PS, Romsos DR, Hoppel CL . Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice Biochem J 1985 231: 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klingenberg M, Echtay KS . Uncoupling proteins: the issues from a biochemist point of view Biochim Biophys Acta 2001 1504: 128–143.

    Article  CAS  PubMed  Google Scholar 

  4. Chretien D, Rustin P, Bourgeron T, Rötig A, Saudubray JM, Munnich A . References charts for respiratory chain activities in human tissues Clin Chim Acta 1994 228: 53–70.

    Article  CAS  PubMed  Google Scholar 

  5. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH . Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia Nat Genet 1997 15: 269–272.

    Article  CAS  PubMed  Google Scholar 

  6. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP . Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression FEBS Lett 1997 408: 39–42.

    Article  CAS  PubMed  Google Scholar 

  7. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB . UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue Biochem Biophys Res Commun 1997 235: 79–82.

    Article  CAS  PubMed  Google Scholar 

  8. Ježek P, Garlid KD . Mammalian mitochondrial uncoupling proteins Int J Biochem Cell Biol 1998 30: 1163–1168.

    Article  PubMed  Google Scholar 

  9. Samec S, Seydoux J, Dulloo AG . Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 1998 12: 715–724.

    Article  CAS  PubMed  Google Scholar 

  10. Walder K . Association between uncoupling protein polymorphisms (UCP2–UCP3) and energy metabolism/obesity in Pima indians Hum Mol Genet 1998 7: 1431–1435.

    Article  CAS  PubMed  Google Scholar 

  11. Himms-Hagen J . Brown adipose tissue thermogenesis: interdisciplinary studies FASEB J 1990 4: 2890–2898.

    Article  CAS  PubMed  Google Scholar 

  12. Fleury C, Sanchis D . The mitochondrial uncoupling protein-2: current status Int J Biochem Cell Biol 1999 31: 1261–1278.

    Article  CAS  PubMed  Google Scholar 

  13. Nicholls DG, Locke RM . Thermogenic mechanisms in brown fat Physiol Rev 1984 64: 1–64.

    Article  CAS  PubMed  Google Scholar 

  14. Klannemark M, Orho M, Groop L . No relationship between identified variants in the uncoupling protein 2 gene and energy expenditure Eur J Endocrinol 1998 139: 217–223.

    Article  CAS  PubMed  Google Scholar 

  15. Bouchard C, Perusse L, Chagnon YC, Warden C, Ricquier D . Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans Hum Mol Genet 1997 6: 1887–1889.

    Article  CAS  PubMed  Google Scholar 

  16. Cassell PG, Neverova M, Janmohamed S, Uwakwe N, Qureshi A, McCarthy MI, Saker PJ, Albon L, Kopelman P, Noonan K, Easlick J, Ramachandran A, Snehalatha C, Pecqueur C, Ricquier D, Warden C, Hitman GA . An uncoupling protein 2 gene variant is associated with a raised body mass index but not Type II diabetes Diabetologia 1999 42: 688–692.

    Article  CAS  PubMed  Google Scholar 

  17. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M, Langin D . Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans J Clin Invest 1997 100: 2665–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warden C . Genetics of uncoupling proteins in humans Int J Obes Relat Metab Disord 1999 23 (Suppl 6): S46–S48.

    Article  CAS  PubMed  Google Scholar 

  19. Echtay KS, Winkler E, Frischmuth K, Klingenberg M . Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone) Proc Natl Acad Sci USA 2001 98: 1416–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pařízková J . Body fat and physical fitness Nijhoff: The Hague 1977 pp 24–51.

    Google Scholar 

  21. Wharton DC, Tzagoloff A . Cytochrome oxidase from beef heart mitochondria Meth Enzymol 1967 10: 245–250.

    Article  CAS  Google Scholar 

  22. Srere PA . Citrate synthase Meth Enzymol 1969 13: 3–11.

    Article  CAS  Google Scholar 

  23. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ . Protein measurement with the Folin phenol reagent J Biol Chem 1951 193: 265–275.

    CAS  PubMed  Google Scholar 

  24. Hainer V, Stunkard A, Kunešová M, Parízková J, Štich V, Allison DB . A twin study of weight loss and metabolic efficiency Int J Obes Relat Metab Disord 2001 25: 533–537.

    Article  CAS  PubMed  Google Scholar 

  25. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, Duussuault J, Moorjani S, Pinault S, Fournier G . The response to long-term overfeeding in identical twins New Engl J Med 1990 322: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  26. Astrup A, Toubro S, Dalgaard LT, Urhammer SA, Sorensen TIA, Pedersen O . Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation Int J Obes Relat Metab Disord 1999 23: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  27. Koenig H, Goldstone A, Lu CY . Testosterone-mediated sexual dimorphism of the rodent heart Circulation Res 1982 50: 782–787.

    Article  CAS  PubMed  Google Scholar 

  28. Papa S . Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications Biochim Biophys Acta 1996 1276: 87–105.

    Article  PubMed  Google Scholar 

  29. Boffoli D, Scacco SC, Vergari R, Persio MT, Solarino G, Laforgia R, Papa S . Ageing is associated in females with a decline in the content and activity on the b-c1 complex in skeletal muscle mitochondria Biochim Biophys Acta 1996 1315: 66–72.

    Article  PubMed  Google Scholar 

  30. Rooyackers OE, Adey DB, Ades PA, Nair KS . Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle Proc Natl Acad Sci USA 1996 93: 15364–15369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pastoris O, Boschi F, Verri M, Baiardi P, Felzani G, Vecchiet J, Dossena M, Catapano M . The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects Exp Gerontol 2000 35: 95–104.

    Article  CAS  PubMed  Google Scholar 

  32. Marin-Garcia J, Baskin LS . Human cytochrome c oxidase during cardiac growth and development Pediatr Cardiol 1989 10: 212–215.

    Article  CAS  PubMed  Google Scholar 

  33. Conley KE, Jubrias SA, Esselman PC . Oxidative capacity and ageing in human muscle J Physiol 2000 526: 203–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S . Decline with age of the respiratory chain activity in human skeletal muscle Biochim Biophys Acta 1994 1226: 73–82.

    Article  CAS  PubMed  Google Scholar 

  35. Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA, Robitaille PM . Muscle metabolism during exercise in young and older untrained and endurance-trained men J Appl Physiol 1993 75: 2125–2133.

    Article  CAS  PubMed  Google Scholar 

  36. Cooper JM, Mann VM, Schapira AHV . Analysis of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of aging J Neurol Sci 1992 113: 91–98.

    Article  CAS  PubMed  Google Scholar 

  37. McCully KK, Fielding RA, Evans WJ, Leigh JSJ, Posner JD . Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles J Appl Physiol 1993 75: 813–819.

    Article  CAS  PubMed  Google Scholar 

  38. Trounce I, Byrne E, Marzuki S . Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing Lancet 1989 1: 637–639.

    Article  CAS  PubMed  Google Scholar 

  39. Müller-Höcker J . Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration J Neurol Sci 1990 100: 14–21.

    Article  PubMed  Google Scholar 

  40. Müller-Höcker J . Cytochrome-c-oxidase deficient cardiomyocytes in the human heart—an age-related phenomenon. A histochemical ultracytochemical study Am J Pathol 1989 134: 1167–1173.

    PubMed  PubMed Central  Google Scholar 

  41. Yen TC, Chen YS, King KL, Yeh SH, Wei YH . Liver mitochondrial respiratory functions decline with age Biochem Biophys Res Commun 1989 165: 944–1003.

    Article  CAS  PubMed  Google Scholar 

  42. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ . Human mitochondrial function during cardiac growth and development Mol Cell Biochem 1998 179: 21–26.

    Article  CAS  PubMed  Google Scholar 

  43. Barrientos A, Casademont J, Rotig A, Miro O, Urbano-Marquez A, Rustin P, Cardellach F . Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle Biochem Biophys Res Commun 1996 229: 536–539.

    Article  CAS  PubMed  Google Scholar 

  44. Allen RG, Keogh BP, Tresini M, Gerhard GS, Volker C, Pignolo RJ, Horton J, Cristofalo VJ . Development and age-associated differences in electron transport potential and consequences for oxidant generation J Biol Chem 1997 272: 24805–24812.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka S, Isoda F, Yamakawa T, Ishihara M, Sekihara H . T lymphopenia in genetically obese rats Clin Immunol Immunopath 1998 86: 219–225.

    Article  CAS  Google Scholar 

  46. Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM . Altered hepatic lymphocytes subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage Hepatology 2000 31: 633–640.

    Article  CAS  PubMed  Google Scholar 

  47. Fink S, Eckert E, Mitchell J, Crosby R, Pomeroy C . T-lymphocyte subsets in patients with abnormal body weight: longitudinal studies in anorexia nervosa and obesity Int J Eat Disord 1996 20: 295–305.

    Article  CAS  PubMed  Google Scholar 

  48. Nieman DC, Nehlsen-Cannarella SI, Henson DA, Butterworth DE, Fagoaga OR, Warren BJ, Rainwater MK . Immune response to obesity and moderate weight loss Int J Obes Relat Metab Disord 1996 20: 353–360.

    CAS  PubMed  Google Scholar 

  49. Nieman DC, Henson DA, Nehlsen-Cannarella SL, Ekkens M, Utter AC, Butterworth DE, Fagoaga OR . Influence of obesity on immune function J Am Diet Assoc 1999 99: 294–299.

    Article  CAS  PubMed  Google Scholar 

  50. Martin-Romero C, Santos-Alvarez J, Goberna R, Sanchez-Margalet V . Human leptin enhances activation and proliferation of human circulating T lymphocytes Cell Immunol 2000 199: 15–24.

    Article  CAS  PubMed  Google Scholar 

  51. Simoneau JA, Kelley DE, Neverova M, Warden CH . Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization FASEB J 1998 12: 1739–1745.

    Article  CAS  PubMed  Google Scholar 

  52. Brady LJ, Hoppel CL . Hepatic mitochondrial function in lean and obese Zucker rats Am J Physiol 1983 245: E239–E245.

    CAS  PubMed  Google Scholar 

  53. Brady PS, Hoppel CL . Peroxisomal palmitoyl-CoA oxidation in the Zucker rat Biochem J 1983 212: 891–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was partly supported by the grant COST OC 918.40, 918.10 and IGA NE 6555-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čapková, M., Houštěk, J., Hansíková, H. et al. Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight subjects. Int J Obes 26, 1110–1117 (2002). https://doi.org/10.1038/sj.ijo.0802055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802055

Keywords

This article is cited by

Search

Quick links