Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Max and inhibitory c-Myc mutants induce erythroid differentiation and resistance to apoptosis in human myeloid leukemia cells

Abstract

We have used the human leukemia cell line K562 as a model to study the role of c-myc in differentiation and apoptosis. We have generated stable transfectants of K562 constitutively expressing two c-Myc inhibitory mutants: D106-143, that carries a deletion in the transactivation domain of the protein, and In373, that carries an insertion in the DNA-interacting region. We show here that In373 is able to compete with c-Myc for Max binding and to inhibit the transformation activity of c-Myc. K562 cells can differentiate towards erythroid or myelomonocytic lineages. K562 transfected with c-myc mutants showed a higher expression of erythroid differentiation markers, without any detectable effects in the myelomonocytic differentiation. We also transfected K562 cells with a zinc-inducible max gene. Ectopic Max overexpression resulted in an increased erythroid differentiation, thus reproducing the effects of c-myc inhibitory mutants. We also studied the role of c-myc mutants and max in apoptosis of K562 induced by okadaic acid, a protein phosphatases inhibitor. The expression of D106-143 and In373 c-myc mutants and the overexpression of max reduced the apoptosis mediated by okadaic acid. The common biochemical activity of D106-143 and In373 is to bind Max and hence to titrate out c-Myc to form non-functional Myc/Max dimers. Similarly, Max overexpression would decrease the relative levels of c-Myc/Max with respect to Max/Max. The results support a model where a threshold of functional c-Myc/Max is required to maintain K562 cells in an undifferentiated state and to undergo drug-mediated apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cañelles, M., Delgado, M., Hyland, K. et al. Max and inhibitory c-Myc mutants induce erythroid differentiation and resistance to apoptosis in human myeloid leukemia cells. Oncogene 14, 1315–1327 (1997). https://doi.org/10.1038/sj.onc.1200948

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1200948

Keywords

This article is cited by

Search

Quick links