Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Critical role for p27Kip1 in cell cycle arrest after androgen depletion in mouse mammary carcinoma cells (SC-3)

Abstract

The molecular mechanisms underlying androgen-regulated cancer growth and the frequent development of refractoriness to endocrine therapy remain unknown. In this study functional and quantitative alterations in cell cycle regulators after androgen depletion were examined in androgen-dependent mouse mammary carcinoma cells (SC-3) as a model system to clarify the initial response of cancer cells to anti-androgen therapy. FACS analysis of SC-3 cells cultured with or without 10−7 M testosterone revealed that suppression of cell growth after hormone withdrawal was due to G1 arrest. Although cyclin D1/Cdk4 activity decreased along with a reduced level of cyclin D1 protein, this was a later event (48–72 h) than the G1 arrest (24 h). Taken together with the results that constitutive expression of cyclin D1 in SC-3 cells did not overcome the growth suppression following androgen depletion, the existence of an alternative pathway(s) causing G1 arrest was suggested. Cyclin E/Cdk2 and cyclin A/Cdk2 activities decreased significantly at 24 h without apparent changes in the amounts of Cdk2, cyclin E or cyclin A. Among various Cdk inhibitors (CKIs) examined, p27Kip1 was upregulated at both mRNA and protein levels at 24 h after androgen depletion. In addition, immunoprecipitation-Western analysis showed that the amount of p27Kip1 associated with Cdk2 complexes increased as early as 24 h. These results suggest that p27Kip1 CKI is a critical target in the initial response of cancer cells to androgen depletion and plays a key role in Cdk2 inactivation through association with the kinase complex, leading to cell cycle arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menjo, M., Kaneko, Y., Ogata, E. et al. Critical role for p27Kip1 in cell cycle arrest after androgen depletion in mouse mammary carcinoma cells (SC-3). Oncogene 17, 2619–2627 (1998). https://doi.org/10.1038/sj.onc.1202193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1202193

Keywords

This article is cited by

Search

Quick links