Abstract
Constitutive activating mutations of the TSHR gene, have been detected in about 30 per cent of hyperfunctioning human thyroid adenomas and in a minority of differentiated thyroid carcinomas. The mutations activating the TSHR gene(s) in the thyroid carcinomas, were located at the codon 623 changing an Ala to a Ser (GCC→TCC) or in codon 632 changing a Thr to Ala or Ile (ACC→GCC or ACC→ATC). In order to study if the constitutively activated TSHR gene(s) has played a role in the determination of the malignant phenotype presented by these tumors, we investigated: (1) the transforming capacity after transfection of mouse 3T3 cells, of a TSHR cDNA activated by an Ala→Ser mutation in codon 623 or an Thr→lle mutation in codon 632 and (2) the pathway(s) eventually responsable(s) for the malignant phenotype of the cells transformed by these constitutively activated TSHR cDNAs. Our results show that (1) the TSHRM623 orM632 cDNAs give rise to 3T3 clones presenting a fully neoplastic phenotype (growth in agar and nude mouse tumorigenesis); this phenotype was weaker in the cells transformed by the 632 cDNA; (2) suggest that the fully transformed phenotype of our 3T3 cells, may be the consequence of the additive effect of the activation of at least two different pathways: the cAMP pathway through Gαs and the Ras dependent MAPK pathway through Gβγ and PI3K and (3) show that the PI3K isoform playing a key role as an effector in the MAPK pathway activation in our 3T3-transformed cells is PI3Kγ. Signaling from PI3Kγ to MAPK appears to require in our murine cellular system a tyrosine kinase (still not characterized), Shc, Grb2, Sos, Ras and Raf. It is proposed that the constitutively activated TSHR genes detected in the thyroid carcinomas, may have played an oncogenic role, participating in their development through these two pathways.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Allen LF, Lefkowitz RJ, Caron MG and Cotecchia S. . 1991 Proc. Nat. Acad. Sci. USA 88: 11354–11358.
Birnbaumer L, Abramowitz J and Brown A. . 1990 Biochim. Biophys. Acta 1031: 163–224.
Cass L, Summers S, Prendergast G, Backer J, Birnbaum M and Meinkoth J. . 1999 Mol. Cell. Biol. 19: 5882–5891.
Chazenbalk GD, Nagayama Y, Russo D, Wadsworth HL and Rapoport B. . 1990 J. Biol. Chem. 265: 20970–20975.
Chazenbalk GD, Nagayama Y, Wadsworth HL, Russo D and Rapoport B. . 1991 Mol. Endocrinol. 5: 1523–1526.
Clapham DE and Neer EJ. . 1997 Ann. Rev. Pharmaco. Toxicol. 37: 167–203.
Cowley S, Peterson H, Kemp P and Marshall CJ. . 1994 Cell 77: 841–852.
Crespo P, Xu N, Simonds WF and Gutkind JS. . 1994 Nature 369: 418–420.
Dohlman HG, Caron MG and Lefkowitz RJ. . 1987 Biochemistry 26: 2657–2664.
Dumont JE, Vassart G and Refetoff S. . 1989 In The Metabolic Basis of Inherited Diseases. Scriver CR, Beaudet AL, Sly WS and Valle D (eds). McGraw-Hill, New York. pp 555–570.
Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J, Schwartz C, Delisle M, Decoulx M, Orgiazzi J, Dumont J and Vassart G. . 1994 Nat. Genet. 7: 396–401.
Fournés B, Monier R, Michiels F, Milgrom E, Misrahi M and Feunteun J. . 1998 Oncogene 16: 985–990.
Freissmuth M and Gilman A. . 1989 J. Biol. Chem. 264: 21907–21914.
Gire V, Marshall C and Wynford-Thomas D. . 1999 Oncogene 18: 4819–4832.
Gire V, Marshall C and Wynford-Thomas D. . 2000 Oncogene 19: 2269–2276.
Gutkind JS. . 1998 Oncogene 17: 1331–1342.
Khosrasi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH and Der CJ. . 1996 Mol. Cell. Biol. 16: 3923–3933.
Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG and Lefkowitz RJ. . 1992 J. Biol. Chem. 267: 1430–1433.
Landis CA, Masters SB, Spada A, Pace A, Bourne H and Vallar L. . 1989 Nature 340: 692–696.
Lopez-Ilasaca M, Crespo P, Pellici G, Gutkind JS and Wetzker R. . 1997 Science 275: 394–397.
Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QJ, Clark OH, Kawasaki E, Bourne HR and McCormick F. . 1990 Science 249: 655–659.
Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Van de Woude GF and Ahn NG. . 1994 Science 264: 966–970.
Marshall CJ. . 1995 Cell 80: 179–185.
Michelin S, Varlet I, Martinerie C, Perbal B, Sarasin A and Suárez HG. . 1991 Oncogene 196: 314–322.
Michiels F, Caillou B, Talbot M, Dessarps-Freichey F, Maunoury M, Schlumberger M, Merckens L, Monier R and Feunteun J. . 1994 Proc. Nat. Acad. Sci. USA 91: 10488–10492.
Miller MJ, Rioux L, Prendergast GV, Cannon S, White MA and Meinkoth JL. . 1998 Mol. Cell. Biol. 18: 3718–3726.
Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J and Vassart G. . 1993 Nature 365: 649–651.
Russo D, Arturi F, Wicker R, Chazenbalk M, Schlumberger M, Du Villard JA, Caillou B, Monier R, Rapoport B, Filetti S and Suárez HG. . 1995a J. Clin. Endocrinol. Metab. 80: 1347–1351.
Russo D, Arturi F, Schlumberger M, Caillou B, Monier R, Filetti S and Suárez HG. . 1995b Oncogene 11: 1907–1911.
Saïd S, Schlumberger M and Suárez HG. . 1994 J. Endocrinol. Invest. 17: 371–379.
Schöneberg T, Schultz G and Gudermann T. . 1999 Mol. Cell. Endocrinol. 151: 181–193.
Sharif M, Sasakawa N and Hanley MR. . 1994 Mol. Cellular Endoc. 100: 115–119.
Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G and Fagin J. . 1996 J. Endocrin. Metab. 81: 3898–3901.
Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenko M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, Gierschick P, Seedorf K, Hsuan JJ, Waterfield MD and Wetzker R. . 1995 Science 269: 690–693.
Suárez HG, Du Villard JA, Caillou B, Schlumberger M, Parmentier C and Monier R. . 1991 Oncogene 6: 677–679.
Suárez HG, Du Villard JA, Caillou B, Schlumberger M, Tubiana M, Parmentier C and Monier R. . 1988 Oncogene 2: 403–406.
Tonacchera M, Van Sande J, Cetani F, Swillens S, Winieski P, Portman I, Dumont J, Vassart G and Parma J. . 1996 J. Clin. Endocrinol. Metab. 81: 547–554.
Van Biesen T, Hawes BE, Luttrell DK, Krueger KM, Touhara K, Porfiri E, Sakaue M, Luttrell LM and Lefkowitz RJ. . 1995 Nature 376: 781–784.
Acknowledgements
We are indebted to M Chaker for the typewriting of the manuscript, Dr J Garcia (Hospital de Clinicas, Buenos Aires, Argentina) for the generous gift of the M632 plasmid and L Daya-Grosjean for the critical reading of the English form. This work was supported by grants from CNRS (Centre National de la Recherche Scientifique, France), Ligue Nationale Française contre le Cancer et Ministère de l'Education et de la Recherche to HG Suárez and from the Associazione Italiana per la Ricerce sul Cancro to S Filetti.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Du Villard, J., Wicker, R., Crespo, P. et al. Role of the cAMP and MAPK pathways in the transformation of mouse 3T3 fibroblasts by a TSHR gene constitutively activated by point mutation. Oncogene 19, 4896–4905 (2000). https://doi.org/10.1038/sj.onc.1203852
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1203852
Keywords
This article is cited by
-
Establishment and validation of a nomogram model for predicting the survival probability of differentiated thyroid carcinoma patients: a comparison with the eighth edition AJCC cancer staging system
Endocrine (2021)
-
Microarray analysis refines classification of non-medullary thyroid tumours of uncertain malignancy
Oncogene (2008)
-
G-protein αolf subunit promotes cellular invasion, survival, and neuroendocrine differentiation in digestive and urogenital epithelial cells
Oncogene (2002)