Abstract
Polyoma virus (Py) differs from other small DNA tumor viruses in not encoding a protein that inactivates p53. The complete Py early region encoding the large T-antigen (PyLT), middle T-antigen (PyMT) and small T-antigen (PyST) will transform primary rodent cells and REF52 cells, but PyMT, the main Py oncogene, by itself will only transform these cells when p53 or ARF is inactivated. We have related Py oncogene cooperation with the effects of the Py T-antigens on the ARF-p53 signaling pathway. PyMT activates an ARF-induced p53-mediated block to cell division explaining the inability of PyMT alone to generate dividing transformed cells. In contrast, in REF52 cells transformed by the whole Py early region (PyREF52), ARF is upregulated but p53 is not activated. Thus PyLT and/or PyST negates the PyMT-induced ARF-mediated block to cell division by disrupting the signaling pathway from ARF to p53. Although there is no detectable interaction or co-localization of endogenous ARF (nucleoli) and MDM2 (nucleoplasm) in PyREF52 cells, expression of transfected ectopic ARF results in an MDM2/ARF interaction and sequestration of MDM2 into the nucleoli. Sequestration of MDM2 by ARF in the nucleoli is not essential for a p53 response in REF52 cells as activation of Raf in REF52Raf-ER cells results in an ARF-induced p53-mediated cell cycle block in the absence of a detectable ARF-MDM2 interaction. Py may provide new insights into the cellular ARF-p53 signaling pathway.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR . 1992 Proc. Natl. Acad. Sci. USA 89: 4549–4553
Courtneidge SA, Smith AE . 1983 Nature 303: 435–439
Cuzin F . 1984 Biochim. Biophys. Acta 781: 193–204
de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW . 1998 Genes Dev. 12: 2434–2442
Dilworth SM . 1990 Semin. Cancer Biol. 1: 407–414
Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ . 1995 Oncogene 11: 21–29
Feinberg AP, Vogelstein B . 1984 Anal. Biochem. 137: 266–267
Haupt Y, Maya R, Kazaz A, Oren M . 1997 Nature 387: 296–299
Honda R, Yasuda H . 1999 EMBO J. 18: 22–27
Kannan K, Munirajan AK, Krishnamurthy J, Bhuvarahamurthy V, Mohanprasad BK, Panishankar KH, Tsuchida N, Shanmugam G . 2000 Int, J. Oncol. 16: 585–590
Kubbutat MH, Jones SN, Vousden KH . 1997 Nature 387: 299–303
Kurokawa K, Tanaka T, Kato J . 1999 Oncogene 18: 2718–2727
Lin AW, Lowe SW . 2001 Proc. Natl. Acad. Sci. USA 98: 5025–5030
Llanos S, Clark PA, Rowe J, Peters G . 2001 Nature Cell Biol. 3: 445–452
Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . 1997 Genes Dev 11: 663–677
Mansur CP, Marcus B, Dalal S, Androphy EJ . 1995 Oncogene 10: 457–465
Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D . 1995 Cancer Res. 55: 2995–2997
Mayo LD, Turchi JJ, Berberich SJ . 1997 Cancer Res. 57: 5013–5016
Meek DW . 1998 Int. J. Radiat. Biol. 74: 729–737
Midgley CA, Lane DP . 1997 Oncogene 15: 1179–1189
Mietz JA, Unger T, Huibregtse JM, Howley PM . 1992 EMBO J. 11: 5013–5020
Mor O, Read M, Fried M . 1997 Oncogene 15: 3113–3119
Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . 1993 Nature 362: 857–860
Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM . 1990 Cell 60: 167–176
Palmero I, Pantoja C, Serrano M . 1998 Nature 395: 125–126
Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA . 1998 Cell 92: 713–723
Quelle DE, Zindy F, Ashmun RA, Sherr CJ . 1995 Cell 83: 993–1000
Rassoulzadegan M, Cowie A, Carr A, Glaichenhaus N, Kamen R, Cuzin F . 1982 Nature 300: 713–718
Rassoulzadegan M, Naghashfar Z, Cowie A, Carr A, Grisoni M, Kamen R, Cuzin F . 1983 Proc. Natl. Acad. Sci. USA 80: 4354–4358
Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A . 1995 Cancer Res. 55: 2988–2994
Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G . 1998 EMBO J. 17: 5001–5014
Swafford DS, Middleton SK, Palmisano WA, Nikula KJ, Tesfaigzi J, Baylin SB, Herman JG, Belinsky SA . 1997 Mol. Cell. Biol. 17: 1366–1374
Tao W, Levine AJ . 1999 Proc. Natl. Acad. Sci. USA 96: 6937–6941
Walter G, Ruediger R, Slaughter C, Mumby M . 1990 Proc. Natl. Acad. Sci. USA 87: 2521–2525
Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . 1999 Nat. Cell. Biol. 1: 20–26
Yew PR, Berk AJ . 1992 Nature 357: 82–85
Zhang Y, Xiong Y . 1999 Mol. Cell 3: 579–591
Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF . 1998 Genes Dev. 12: 2424–2433
Acknowledgements
We would like to thank Drs Gordon Peters, Frank McCormick and Haiyan Jiang for their helpful advice and comments during the preparation of this manuscript and the course of the research.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lomax, M., Fried, M. Polyoma virus disrupts ARF signaling to p53. Oncogene 20, 4951–4960 (2001). https://doi.org/10.1038/sj.onc.1204717
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1204717
Keywords
This article is cited by
-
Chromosomal instability at a mutational hotspot in polyoma middle T-antigen affects its ability to activate the ARF-p53 tumor suppressor pathway
Oncogene (2006)
-
p14ARF regulates E2F activity
Oncogene (2002)
-
Polyoma virus middle T antigen and its role in identifying cancer-related molecules
Nature Reviews Cancer (2002)


