Abstract
cdc25C is a phosphatase, which activates the mitosis-promoting factor cyclin B1/cdc2 by dephosphorylation, and thus triggers G2/M transition. The activity of cdc25C itself is controlled by phosphorylation of certain amino-acid residues, which among other things determines the subcellular localization of the enzyme. Here, we describe a new phosphorylation site at threonine 236 of cdc25C, which is phosphorylated by protein kinase CK2. This phosphorylation site is located near the nuclear localization signal (amino acids 239–245). We demonstrate that cdc25C interacts with importin β and the importin α/β heterodimer but not with importin α. We further found that a cdc25C phosphorylation mutant where threonine 236 was replaced by aspartic acid as well as cdc25C phosphorylated by CK2 binds importin β or the importin α/β heterodimer less efficiently than wild type or the corresponding alanine mutant. Furthermore, the cdc25CT236D shows a retarded uptake into the nucleus in a cell import assay. Inhibition of protein kinase CK2 enzyme activity in vivo resulted in an enhanced nuclear localization of cdc25C. Thus, phosphorylation of cdc25C at threonine 236 is an important signal for the retention of cdc25C in the cytoplasm.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout










Similar content being viewed by others
References
Adam SA, Marr RS and Gerace L . (1990). J. Cell Biol., 111, 807–816.
Ahmed K, Gerber DA and Cochet C . (2002). Trends Cell Biol., 12, 226–230.
Bosc DG, Slominski E, Sichler C and Litchfield DW . (1995). J. Biol. Chem., 270, 25872–25878.
Briggs LJ, Johnstone RW, Elliott RM, Xiao CY, Dawson M, Trapani JA and Jans DA . (2001). Biochem. J., 353, 69–77.
Bureik M, Jungbluth A, Drescher R and Wagner P . (1997). Biol. Chem. Hoppe Seyler, 378, 1361–1371.
Cardenas ME, Dang Q, Glover CVC and Gasser SM . (1992). EMBO J., 11, 1785–1796.
Cingolani G, Bednenko J, Gillespie MT and Gerace L . (2002). Mol. Cell, 10, 1345–1353.
Dalal SN, Schweitzer CM, Gan JM and DeCaprio JA . (1999). Mol. Cell. Biol., 19, 4465–4479.
Daum JR and Gorbsky GJ . (1998). J. Biol. Chem., 273, 30622–30629.
Dotan I, Ziv E, Dafni N, Beckman JS, McCann RO, Glover CVC and Canaani D . (2001). Biochem. Biophys. Res. Commun., 288, 603–609.
Escargueil AE, Plisov SY, Filhol O, Cochet C and Larsen AK . (2000). J. Biol. Chem., 275, 34710–34718.
Faust M, Günther J, Morgenstern E, Montenarh M and Götz C . (2002). Cell. Mol. Life Sci., 59, 2155–2164.
Finlay DR, Newmeyer DD, Price TM and Forbes DJ . (1987). J. Cell Biol., 104, 189–200.
Fontes MR, Teh T, Toth G, John A, Pavo I, Jans DA and Kobe B . (2003). Biochem. J., 375, 339–349.
Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA and Vasudevan SG . (1999). Biochem. Biophys. Res. Commun., 257, 731–737.
Gabrielli BG, Clark JM, McCormack AK and Ellem KA . (1997). J. Biol. Chem., 272, 28607–28614.
Gabrielli BG, De Souza CPC, Tonks ID, Clark JM, Hayward NK and Ellem KAO . (1996). J. Cell Sci., 109, 1081–1093.
Götz C, Kartarius S, Scholtes P, Nastainczyk W and Montenarh M . (1999). Eur. J. Biochem., 266, 493–501.
Grankowski N, Boldyreff B and Issinger O-G . (1991). Eur. J. Biochem., 198, 25–30.
Graves PR, Lovly CM, Uy GL and Piwnica-Worms H . (2001). Oncogene, 20, 1839–1851.
Graves PR, Yu LJ, Schwarz JK, Gales J, Sausville EA, O'Connor PM and Piwnica-Worms H . (2000). J. Biol. Chem., 275, 5600–5605.
Hanna DE, Rethinaswamy A and Glover CVC . (1995). J. Biol. Chem., 270, 25905–25914.
Hoffmann I, Clarke PR, Marcote MJ, Karsenti E and Draetta G . (1993). EMBO J., 12, 53–63.
Hoffmann I and Karsenti E . (1994). J. Cell Sci., 18, 75–79.
Hübner S, Xiao CY and Jans DA . (1997). J. Biol. Chem., 272, 17191–17195.
Imamoto N, Shimamoto T, Kose S, Takao T, Tachibana T, Matsubae M, Sekimoto T, Shimonishi Y and Yoneda Y . (1995a). FEBS Lett., 368, 415–419.
Imamoto N, Shimamoto T, Takao T, Tachibana T, Kose S, Matsubae M, Sekimoto T, Shimonishi Y and Yoneda Y . (1995b). EMBO J., 14, 3617–3626.
Izumi K and Maller JL . (1993). Mol. Biol. Cell, 4, 1337–1350.
Izumi T, Walker DH and Maller JL . (1992). Mol. Biol. Cell, 3, 927–939.
Jans DA . (1995). Biochem. J., 311, 705–716.
Karlsson C, Katich S, Hagting A, Hoffmann I and Pines J . (1999). J. Cell Biol., 146, 573–583.
Kasahara H and Izumo S . (1999). Mol. Cell Biol., 19, 526–536.
Krek W, Maridor G and Nigg EA . (1992). J. Cell Biol., 116, 43–55.
Kuenzel EA and Krebs EG . (1985). Proc. Natl. Acad. Sci. USA, 82, 737–741.
Kumagai A and Dunphy WG . (1992). Cell, 70, 139–151.
Laemmli UK . (1970). Nature, 227, 680–682.
Lam MH, House CM, Tiganis T, Mitchelhill KI, Sarcevic B, Cures A, Ramsay R, Kemp BE, Martin TJ and Gillespie MT . (1999). J. Biol. Chem., 274, 18559–18566.
Li DX, Dobrowolska G, Aicher LD, Chen MZ, Wright JH, Drueckes P, Dunphy EL, Munar ES and Krebs EG . (1999). J. Biol. Chem., 274, 32988–32996.
Li J, Meyer AN and Donoghue DJ . (1997). Proc. Natl. Acad. Sci. USA, 94, 502–507.
Li Y, Rosal RV, Brandt-Rauf PW and Fine RL . (2002). Biochem. Biophys. Res. Commun., 298, 439–449.
Litchfield DW . (2003). Biochem. J., 369, 1–15.
Litchfield DW, Bosc DG and Slominski E . (1995). Biochim. Biophys. Acta Mol. Cell Res., 1269, 69–78.
Litchfield DW, Lüscher B, Lozeman FJ, Eisenman RN and Krebs E . (1992). J. Biol. Chem., 267, 13943–13951.
Lorenz A, Herrmann CPE, Issinger O-G and Montenarh M . (1992). Int. J. Oncol., 1, 571–580.
Meek DW, Simon S, Kikkawa U and Eckhart W . (1990). EMBO J., 9, 3253–3260.
Meggio F, Boldyreff B, Issinger O-G and Pinna LA . (1993). Biochim. Biophys. Acta, 1164, 223–225.
Meggio F and Pinna LA . (2003). FASEB J., 17, 349–368.
Miller ME and Cross FR . (2001). J. Cell Sci., 114, 1811–1820.
Montenarh M . (2003). Adv. Clin. Exp. Med., 12, 15–22.
Morgan DO . (1997). Annu. Rev. Cell Dev. Biol., 13, 261–291.
Mulner-Lorillon O, Cormier P, Labbe J-C, Doree M, Pouhle R, Osborne H and Belle R . (1990). Eur. J. Biochem., 193, 529–534.
Nigg EA . (2001). Nat. Rev. Mol. Cell Biol., 2, 21–32.
Palacios I, Weis K, Klebe C, Mattaj IW and Dingwall C . (1996). J. Cell Biol., 133, 485–494.
Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes MJ, Wu Z, Stephenson MT and Piwnica-Worms H . (1998). Cell Growth Differ., 9, 197–208.
Pinna LA and Meggio F . (1997). Prog. Cell Cycle Res., 3, 77–97.
Piwnica-Worms H, Atherton-Fessler S, Lee MS, Ogg S, Swenson KI and Parker LL . (1991). Cold Spring Harb. Symp. Quant. Biol., 56, 567–576.
Qian YW, Erikson E, Taieb FE and Maller JL . (2001). Mol. Biol. Cell, 12, 1791–1799.
Quimby BB and Corbett AH . (2001). Cell Mol. Life Sci., 58, 1766–1773.
Rihs H-P, Jans DA, Fan H and Peters R . (1991). EMBO J., 10, 633–639.
Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G and Marshall LA . (2000). Cell Signal., 12, 405–411.
Russo G, Vandenberg M, Yu IY, Bae Y-S, Franza BR and Marshak DR . (1992). J. Biol. Chem., 267, 20317–20325.
Schneider E, Kartarius S, Schuster N and Montenarh M . (2002). Oncogene, 21, 5031–5037.
Seger D, Gechtman Z and Shaltiel S . (1998). J. Biol. Chem., 273, 24805–24813.
Strausfeld U, Fernandez A, Capony JP, Girard F, Lautredou N, Derancourt J, Labbe JC and Lamb NJ . (1994). J. Biol. Chem., 269, 5989–6000.
Theis-Febvre N, Filhol O, Froment C, Cazales M, Cochet C, Monsarrat B, Ducommun B and Baldin V . (2003). Oncogene, 22, 220–232.
Toyoshima-Morimoto F, Taniguchi E and Nishida E . (2002). EMBO Rep., 3, 341–348.
Walworth NC . (2000). Curr. Opin. Cell Biol., 12, 697–704.
Xiao CY, Jans P and Jans DA . (1998). FEBS Lett., 440, 297–301.
Yim H, Lee YH, Lee CH and Lee SK . (1999). Planta Med., 65, 9–13.
Yu IJ, Spector DL, Bae Y-S and Marshak DR . (1991). J. Cell Biol., 114, 1217–1232.
Zeng Y, Forbes KC, Wu ZQ, Moreno S, Piwnica-Worms H and Enoch T . (1998). Nature, 395, 507–510.
Acknowledgements
We thank Jürgen Günther for technical assistance, Marianne Buchholz for help with the manuscript and Dr Andrea Krempler for careful reading of the manuscript and many helpful suggestions. We thank Dr David Jans for kindly providing importin α and importin β constructs, Dr Hans Stahl for purified SV40 large T antigen and Dr Wolfgang Nastainczyk for the synthesis of the peptide filters. This work was supported by a grant from Deutsche Forschungsgemeinschaft Mo 309/11-3.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schwindling, S., Noll, A., Montenarh, M. et al. Mutation of a CK2 phosphorylation site in cdc25C impairs importin α/β binding and results in cytoplasmic retention. Oncogene 23, 4155–4165 (2004). https://doi.org/10.1038/sj.onc.1207566
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1207566
Keywords
This article is cited by
-
Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm
Oncogene (2015)
-
A specific inhibitor of protein kinase CK2 delays gamma-H2Ax foci removal and reduces clonogenic survival of irradiated mammalian cells
Radiation Oncology (2011)
-
Down-regulation of CK2 activity results in a decrease in the level of cdc25C phosphatase in different prostate cancer cell lines
Molecular and Cellular Biochemistry (2011)
-
The ‘regulatory’ β-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation
Oncogene (2005)