Abstract
It is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated. We show that the steady-state levels of Ski protein are controlled post-translationally by cell cycle-dependent proteolysis, wherein Ski is degraded during the interphase of the cell cycle but is relatively stable during mitosis. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme Cdc34 mediates cell cycle-dependent Ski degradation both in vitro and in vivo. Overexpression of dominant-negative Cdc34 stabilizes Ski and enhances its ability to antagonize TGF-β signaling. Our data suggest that regulated proteolysis of Ski is one of the key mechanisms that control the threshold levels of this proto-oncoprotein, and thus prevents epithelial cells from becoming TGF-β resistant.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K and Kawabata M . (1999). J. Biol. Chem., 274, 35269–35277.
Ambrose MR, Bottazzi ME and Goodenow MM . (1995). DNA Cell Biol., 14, 701–707.
Berk M, Desai SY, Heyman HC and Colmenares C . (1997). Genes Dev., 11, 2029–2039.
Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K and Wrana JL . (2001). Nat. Cell Biol., 3, 587–595.
Boyer PL, Colmenares C, Stavnezer E and Hughes SH . (1993). Oncogene, 8, 457–466.
Cohen SB, Zheng G, Heyman HC and Stavnezer E . (1999). Nucleic Acids Res., 27, 1006–1014.
Colmenares C and Stavnezer E . (1989). Cell, 59, 293–303.
Colmenares C, Sutrave P, Hughes SH and Stavnezer E . (1991). J. Virol., 65, 4929–4935.
Fumagalli S, Doneda L, Nomura N and Larizza L . (1993). Melanoma Res., 3, 23–27.
Grimes HL, Ambrose MR and Goodenow MM . (1993). Oncogene, 8, 2863–2868.
Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.
Heyman HC and Stavnezer E . (1994). J. Biol. Chem., 269, 26996–27003.
Hua X, Liu X, Ansari DO and Lodish HF . (1998). Genes Dev., 12, 3084–3095.
Jin J and Harper JW . (2003). Cancer Cell, 3, 517–518.
Kim SY, Herbst A, Tworkowski KA, Salghetti SE and Tansey WP . (2003). Mol. Cell, 11, 1177–1188.
Laiho M, DeCaprio JA, Ludlow JW, Livingston DM and Massague J . (1990). Cell, 62, 175–185.
Li Y, Turck CM, Teumer JK and Stavnezer E . (1986). J. Virol., 57, 1065–1072.
Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA and Lodish HF . (2000). Anal. Biochem., 280, 20–28.
Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA and Lodish HF . (1997). Proc. Natl. Acad. Sci. USA, 94, 10669–10674.
Liu X, Sun Y, Weinberg RA and Lodish HF . (2001). Cytokine Growth Factor Rev., 12, 1–8.
Luo K . (2003). J. Bone Joint Surg. Am., 85-A (Suppl 3), 39–43.
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S and Zhou Q . (1999). Genes Dev., 13, 2196–2206.
Medrano EE . (2003). Oncogene, 22, 3123–3129.
Michael WM and Newport J . (1998). Science, 282, 1886–1889.
Murray AW . (1991). Methods Cell Biol., 36, 581–605.
Nagase T, Nomura N and Ishii S . (1993). J. Biol. Chem., 268, 13710–13716.
Nomura N, Sasamoto S, Ishii S, Date T, Matsui M and Ishizaki R . (1989). Nucleic Acids Res., 17, 5489–5500.
Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, Kohno I and Ishii S . (1999). Genes Dev., 13, 412–423.
Pati D, Meistrich ML and Plon SE . (1999). Mol. Cell. Biol., 19, 5001–5013.
Pearson-White S . (1993). Nucleic Acids Res., 21, 4632–4638.
Pearson-White S and Crittenden R . (1997). Nucleic Acids Res., 25, 2930–2937.
Plon SE, Leppig KA, Do HN and Groudine M . (1993). Proc. Natl. Acad. Sci. USA, 90, 10484–10488.
Prunier C, Pessah M, Ferrand N, Seo SR, Howe P and Atfi A . (2003). J. Biol. Chem., 278, 26249–26257.
Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D and Medrano EE . (2001). Cancer Res., 61, 8074–8078.
Shinagawa T, Dong HD, Xu M, Maekawa T and Ishii S . (2000). EMBO J., 19, 2280–2291.
Stavnezer E, Barkas AE, Brennan LA, Brodeur D and Li Y . (1986). J. Virol., 57, 1073–1083.
Stroschein SL, Bonni S, Wrana JL and Luo K . (2001). Genes Dev., 15, 2822–2836.
Stroschein SL, Wang W, Zhou S, Zhou Q and Luo K . (1999). Science, 286, 771–774.
Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF and Weinberg RA . (1999a). Mol. Cell, 4, 499–509.
Sun Y, Liu X, Ng-Eaton E, Lodish HF and Weinberg RA . (1999b). Proc. Natl. Acad. Sci. USA, 96, 12442–12447.
Sutrave P, Copeland TD, Showalter SD and Hughes SH . (1990a). Mol. Cell. Biol., 10, 3137–3144.
Sutrave P, Kelly AM and Hughes SH . (1990b). Genes Dev., 4, 1462–1472.
Sutrave P, Leferovich JM, Kelly AM and Hughes SH . (2000). Gene, 241, 107–116.
von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK and Larsson LG . (2003). Mol. Cell, 11, 1189–1200.
Wan Y, Liu X and Kirschner MW . (2001). Mol. Cell, 8, 1027–1039.
Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K and Shi Y . (2002). Cell, 111, 357–367.
Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E and Medrano EE . (2000). Proc. Natl. Acad. Sci. USA, 97, 5924–5929.
Yew PR and Kirschner MW . (1997). Science, 277, 1672–1676.
Zhang F, Lundin M, Ristimaki A, Heikkila P, Lundin J, Isola J, Joensuu H and Laiho M . (2003). Cancer Res., 63, 5005–5010.
Zheng G, Blumenthal KM, Ji Y, Shardy DL, Cohen SB and Stavnezer E . (1997). J. Biol. Chem., 272, 31855–31864.
Acknowledgements
We thank Dr Plon for the generous supply of the Cdc34 cDNA clones and Drs Kirschner, Pagano, Ruderman and Weissman for Ubc5 and Ubc10 expression clones. We also thank Dr Natalie Ahn and Dr Katheryn Resing and members of their laboratories for stimulating discussions. We also thank Drs Ahn and Goodrich for critically reading the manuscript. This work is supported by Grant CA95527-01 from the National Institutes of Health to XL.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Macdonald, M., Wan, Y., Wang, W. et al. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 23, 5643–5653 (2004). https://doi.org/10.1038/sj.onc.1207733
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1207733
Keywords
This article is cited by
-
Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34
Nature Communications (2019)
-
Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease
Signal Transduction and Targeted Therapy (2018)
-
c-Ski in health and disease
Cell and Tissue Research (2012)
-
Ski and SnoN, potent negative regulators of TGF-β signaling
Cell Research (2009)
-
The Ski oncoprotein is upregulated and localized at the centrosomes and mitotic spindle during mitosis
Oncogene (2005)