Abstract
The antipsychotic effect of neuroleptics cannot be attributed entirely to acute blockade of postsynaptic D2-like dopamine (DA) receptors, but may arise in conjunction with the delayed depolarization block of the presynaptic neurons and reduced DA synthesis capacity. Whereas the phenomenon of depolarization block is well established in animals, it is unknown if a similar phenomenon occurs in humans treated with neuroleptics. We hypothesized that haloperidol treatment should result in decreased DA synthesis capacity. We used 6-[18F]fluoro-L-dopa (FDOPA) and positron emission tomography (PET) in conjunction with compartmental modeling to measure the relative activity of DOPA decarboxylase (DDC) (kD3, min−1) in the brain of nine unmedicated patients with schizophrenia, first in the untreated condition and again after treatment with haloperidol. Patients were administered psychometric rating scales at baseline and after treatment. Consistent with our hypothesis, there was a 25% decrease in the magnitude of kD3 in both caudate and putamen following 5 weeks of haloperidol therapy. In addition, the magnitudes of kD3 in cerebral cortex and thalamus were also decreased. Psychopathology as measured with standard rating scales improved significantly in all patients. The decrease of kD3 in the thalamus was highly significantly correlated with the improvement of negative symptoms. Subchronic treatment with haloperidol decreased the activity of DDC in the brain of patients with schizophrenia. This observation is consistent with the hypothesis that the antipsychotic effect of chronic neuroleptic treatment is associated with a decrease in DA synthesis, reflecting a depolarization block of presynaptic DA neurons. We link an alteration in cerebral catecholamine metabolism in human brain with the therapeutic action of neuroleptic medication.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Amin F, Davidson M, Davis KL (1992). Homovanillic acid measurement in clinical research: a review of methodology. Schizophr Bull 18: 123–148.
Andreasen NC, Arndt S, Swayze II V, Cizadlo T, Flaum M, O'Leary D et al (1994). Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266: 294–298.
Arciniegas D, Rojas DC, Teale P, Sheeder J, Sandberg E, Reite M (1999). The thalamus and the schizophrenia phenotype: failure to replicate reduced volume. Biol Psychiatry 45: 1329–1335.
Barnes TR (1989). A rating scale for drug-induced akathisia. Br J Psychiatry 154: 672–676.
Bouthenet ML, Martres MP, Sales N, Schwartz JC (1987). A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride. Neuroscience 20: 117–155.
Bowers Jr MB, Swigar ME, Jatlow PI, Goicoechea N (1984). Plasma catecholamine metabolites and early response to haloperidol. J Clin Psychiatry 45: 248–251.
Bracha HS, Livingston RL, Clothier J, Linington BB, Karson CN (1993). Correlation of severity of psychiatric patients' delusions with right hemispatial inattention (left-turning behavior). Am J Psychiatry 150: 330–332.
Carlsson A (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186.
Carlsson A, Hansson LO, Waters N, Carlsson ML (1999a). A gluatamatergic deficiency model of schizophrenia. Br J Psychiatry 174 (Suppl 37): 2–6.
Carlsson A, Lindqvist M (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144.
Carlsson A, Waters N, Carlsson ML (1999b). Neurotransmitter interactions in schizophrenia—therapeutic implications. Biol Psychiatry 46: 1388–1395.
Chang WH, Chen TY, Lee CF, Hung JC, Hu WH, Yeh EK (1988). Plasma homovanillic acid levels and subtyping of schizophrenia. Psychiatry Res 23: 239–244.
Chiodo LA, Bunney BS (1983). Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3: 1607–1619.
Chouinard G, Ross-Chouinard A, Annable L, Jones BD (1980). The extrapyramidal symptom rating scale. Can J Neurol Sci 7: 233.
Corson PW, Nopoulos P, Andreasen NC, Heckel D, Arndt S (1999). Caudate size in first-episode neuroleptic-naive schizophrenic patients measured using an artificial neural network. Biol Psychiatry 46: 712–720.
Cumming P, Ase A, Laliberte C, Kuwabara H, Gjedde A (1997). In vivo regulation of DOPA decarboxylase by dopamine receptors in rat brain. J Cereb Blood Flow Metab 17: 1254–1260.
Cumming P, Gjedde A (1998). Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms. Synapse 29: 37–61.
Cumming P, Léger GC, Kuwabara H, Gjedde A (1993). Pharmacokinetics of plasma 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]Fdopa) in humans. J Cereb Blood Flow Metab 13: 668–675.
Cumming P, Yokoi F, Chen A, Deep P, Dagher A, Reutens D et al (1999). Pharmacokinetics of radiotracers in human plasma during positron emission tomography. Synapse 34: 124–134.
Danielsen EH, Smith D, Hermansen F, Gjedde A, Cumming P (2001). Acute neuroleptic stimulates DOPA decarboxylase in porcine brain in vivo. Synapse 41: 172–175.
Davila R, Manero E, Zumarraga M, Andia I, Schweitzer JW, Friedhoff AJ (1988). Plasma homovanillic acid as a predictor of response to neuroleptics. Arch Gen Psychiatry 45: 564–567.
Deep P, Dagher A, Sadikot A, Gjedde A, Cumming P (1999). Stimulation of dopa decarboxylase activity in striatum of healthy human brain secondary to NMDA receptor antagonism with a low dose of amantadine. Synapse 34: 313–318.
Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49: 538–544.
Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J et al (1997). A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl) 133: 396–404.
Gjedde A, Léger GC, Cumming P, Yasuhara Y, Evans AC, Guttman M et al (1993). Striatal L-dopa decarboxylase activity in Parkinson's disease in vivo: implications for the regulation of dopamine synthesis. J Neurochem 61: 1538–1541.
Gjedde A, Reith J, Dyve S, Léger G, Guttman M, Diksic M et al (1991). Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 88: 2721–2725.
Grace AA (1992). The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm 36 (Suppl): 91–131.
Grace AA, Bunney BS (1986). Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238: 1092–1100.
Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG et al (2002). Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry 51: 801–808.
Guy W (1976). Clinical global impressions CGI. In: Guy W (ed). ECDEU Assessment Manual for Psychopharmacology, Revised. DHHS Publication: Rockville, MD.
Hazlett EA, Buchsbaum MS, Byne W, Wei TC, Spiegel-Cohen J, Geneve C et al (1999). Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156: 1190–1199.
Hietala J, Syvalahti E, Vilkman H, Vuorio K, Rakkolainen V, Bergman J et al (1999). Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35: 41–50.
Hietala J, Syvalahti E, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M et al (1995). Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346: 1130–1131.
Huang SC, Yu DC, Barrio JR, Grafton S, Melega WP, Hoffman JM et al (1991). Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies. J Cereb Blood Flow Metab 11: 898–913.
Johnstone EC, Crow TJ, Frith CD, Carney MW, Price JS (1978). Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 1: 848–851.
Kay SR, Fiszbein A, Opler LA (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13: 261–276.
Keshavan MS, Rosenberg D, Sweeney JA, Pettegrew JW (1998). Decreased caudate volume in neuroleptic-naive psychotic patients. Am J Psychiatry 155: 774–778.
Kumari V, Soni W, Mathew VM, Sharma T (2000). Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry 57: 609–614.
Larisch R, Meyer W, Klimke A, Kehren F, Vosberg H, Müller-Gartner HW (1998). Left–right asymmetry of striatal dopamine D2 receptors. Nucl Med Commun 19: 781–787.
Laruelle M, Abi Dargham A, Gil R, Kegeles L, Innis R (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46: 56–72.
Léger G, Gjedde A, Kuwabara H, Guttman M, Cumming P (1998). Effect of catechol–methyltransferase inhibition on brain uptake of [18F]fluorodopa: implications for compartmental modelling and clinical usefulness. Synapse 30: 351–361.
Lindström LH, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P et al (1999). Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(β-11C) DOPA and PET. Biol Psychiatry 46: 681–688.
Lyon N, Satz P (1991). Left turning (swivel) in medicated chronic schizophrenic patients. Schizophr Res 4: 53–58.
Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001). Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11: 543–550.
Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al (2002). Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5: 267–271.
Miller DD, Andreasen NC, O'Leary DS, Watkins GL, BolesPonto LL, Hichwa RD (2001). Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry 49: 704–715.
Miller DD, Rezai K, Alliger R, Andreasen NC (1997). The effect of antipsychotic medication on relative cerebral blood perfusion in schizophrenia: assessment with technetium-99m hexamethyl-propyleneamine oxime single photon emission computed tomography. Biol Psychiatry 41: 550–559.
Nordström AL, Farde L, Halldin C (1992). Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology (Berl) 106: 433–438.
Oke AF, Adams RN (1987). Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. Schizophr Bull 13: 589–604.
Pedro BM, Pilowsky LS, Costa DC, Hemsley DR, Ell PJ, Verhoeff NP et al (1994). Stereotypy, schizophrenia and dopamine D2 receptor binding in the basal ganglia. Psychol Med 24: 423–429.
Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F et al (1994). Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 91: 11651–11654.
Roth RH, Elsworth JD (1995). Biochemical pharmacology of midbrain dopamine neurons. In: Bloom FE and Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven: New York. pp 227–243.
Scheepers FE, Gispen de Wied CC, Hulshoff Pol HE, Kahn RS (2001). Effect of clozapine on caudate nucleus volume in relation to symptoms of schizophrenia. Am J Psychiatry 158: 644–646.
Seeman P, Lee T (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188: 1217–1219.
Shihabuddin L, Buchsbaum MS, Hazlett EA, Silverman J, New A, Brickman AM et al (2001). Striatal size and relative glucose metabolic rate in schizotypal personality disorder and schizophrenia. Arch Gen Psychiatry 58: 877–884.
Shihabuddin I, Shihabuddin L, Buchsbaum MS, Hazlett EA, Haznedar MM, Harvey PD et al (1998). Dorsal striatal size, shape, and metabolic rate in never-medicated and previously medicated schizophrenics performing a verbal learning task. Arch Gen Psychiatry 55: 235–243.
Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD et al (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916.
Stout DB, Huang SC, Melega WP, Raleigh MJ, Phelps ME, Barrio JR (1998). Effects of large neutral amino acid concentrations on 6-[F-18]Fluoro-L-DOPA kinetics. J Cereb Blood Flow Metab 18: 43–51.
White FJ, Wang RY (1983). Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057.
Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY et al (1989). Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146: 905–908.
Wolkin A, Rusinek H, Vaid G, Arena L, Lafargue T, Sanfilipo M et al (1998). Structural magnetic resonance image averaging in schizophrenia. Am J Psychiatry 155: 1064–1073.
Woods RP, Cherry SR, Mazziotta JC (1992). Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16: 620–633.
Yatham LN, Liddle PF, Shiah IS, Lam RW, Ngan E, Scarrow G et al (2002). PET study of [18F]6-Fluoro-L-Dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry 159: 768–774.
Young KA, Randall PK, Wilcox RE (1995). Startle and sensorimotor correlates of ventral thalamic dopamine and GABA in rodents. Neuroreport 15: 2495–2499.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gründer, G., Vernaleken, I., Müller, M. et al. Subchronic Haloperidol Downregulates Dopamine Synthesis Capacity in the Brain of Schizophrenic Patients In Vivo. Neuropsychopharmacol 28, 787–794 (2003). https://doi.org/10.1038/sj.npp.1300103
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.npp.1300103
Keywords
This article is cited by
-
The relationship between striatal dopamine and anterior cingulate glutamate in first episode psychosis changes with antipsychotic treatment
Translational Psychiatry (2023)
-
Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study
Molecular Psychiatry (2023)
-
Prospective F-18 FDOPA PET Imaging Study in Human PD
Nuclear Medicine and Molecular Imaging (2022)
-
The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study
Molecular Psychiatry (2021)
-
Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: an [18F]DOPA and [11C]raclopride PET study in first-episode psychosis
Molecular Psychiatry (2021)