Abstract
The radiolabeled serotonin transporter (SERT) ligand [11C](+)-McN5652 has recently been used in clinical positron emission tomography (PET) studies for SERT imaging. However, this radioligand offers disadvantages in routine clinical settings because of its short radioisotope half-life (eg PET facilities within hospitals without a cyclotron need to acquire such radioligands from distant cyclotron units for clinical use). S-([18F]fluoromethyl)-(+)-McN5652 ([18F](+)-FMe-McN5652) is an analogue which has been synthesized newly, and has a significantly longer radioisotope half-life. In the porcine brain, it demonstrates the same characteristic distribution pattern of serotonin-uptake sites like the 11C-labeled congener with the highest binding in the midbrain and thalamus and the lowest in the cerebellum and occipital cortex. It shows a 30% higher blood–brain transfer and a slower peripheral metabolism than [11C](+)-McN5652. Rather uniform brain binding was observed after injection of the pharmacologically inactive radiolabeled enantiomer, or after pretreatment with the highly selective SERT inhibitor citalopram. The norepinephrine uptake inhibitor maprotiline did not show any inhibitory effect. Using a one-tissue compartment model (K1, k″2) or a two-tissue compartment model (K1 to k4) with or without constraints for calculation, the regional binding parameters of [11C](+)-McN5652 and [18F](+)-FMe-McN5652 are highly correlated among each other and with the SERT density, as determined by in vitro binding of [3H]citalopram. Using constraints to correct for the free fraction and nonspecific binding of the radiotracers, a considerable increase of the midbrain–occipital cortex ratios with higher values for [18F](+)-FMe-McN5652 compared to [11C](+)McN5652 was revealed. It is concluded that [18F](+)-FMe-McN5652 has better features than [11C](+)McN5652 for SERT imaging with PET.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ables AZ, Baughman III OL (2003). Antidepressants: update on new agents and indications. Am Famicians Phys 67: 547–554.
Akaike H (1974). A new look at the statistical model identification. IEEE Trans Automat Control AC19: 716–723.
Becke AD (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098–3100.
Bergman J, Eskola O, Lehikoinen P, Solin O (2001). Automated synthesis and purification of [18F]bromofluoromethane at high specific radioactivity. Appl Radiat Isot 54: 927–933.
Bondy B, Erfurth A, de Jonge S, Kruger M, Meyer H (2000). Possible association of the short allele of the serotonin transporter promoter gene polymorphism (5-HTTLPR) with violent suicide. Mol Psychiatry 5: 193–195.
Breneman CM, Wiberg KB (1990). Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11: 361–373.
Brix G, Doll J, Bellemann ME, Trojan H, Haberkorn U, Schmidlin P et al (1997). Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals. Eur J Nucl Med 24: 779–786.
Brust P, Scheffel U, Szabo Z (1999). Radioligands for the study of the 5-HT transporter in vivo. IDrugs 2: 129–145.
Brust P, Zessin J, Kuwabara H, Pawelke B, Kretzschmar M, Hinz R et al (2003). Positron emission tomography imaging of the serotonin transporter in the pig brain using [11C](+)-McN5652 and S-([18F]fluoromethyl)-(+)-McN5652. Synapse 47: 143–151.
Buck A, Gucker PM, Schönbächler RD, Argoni M, Kneifel S, Vollenweider FX et al (2000). Evaluation of serotonergic transporters using PET and [11C](+)-McN-5652: assessment of methods. J Cereb Blood Flow Metab 20: 253–262.
Carson RE, Breier A, Debartolomeis A, Saunders RC, Su TP, Schmall B et al (1997). Quantification of amphetamine-induced changes in C-11 raclopride binding with continuous infusion. J Cereb Blood Flow Metab 17: 437–447.
Christensen AV, Fjalland B, Pedersen V, Danneskiold-Samsoe P, Svendsen O (1977). Pharmacology of a new phthalane (Lu 10-171), with specific 5-HT uptake inhibiting properties. Eur J Pharmacol 41: 153–162.
Coenen HH, Colosimo M, Schüller M, Stöcklin G (1986). Preparation of n.c.a. [18F]CH2BrF via aminopolyether supported nucleophilic substitution. J Labelled Compd Radiopharm 23: 587–595.
Cumming P, Kretzschmar M, Brust P, Smith DF (2001). Quantitative radioluminography of serotonin uptake sites in the porcine brain. Synapse 39: 351–355.
Cunningham VJ, Lammertsma AA (1995). Radioligand studies in brain: kinetic analysis of PET data. Med Chem Res 5: 79–96.
Dahlström M, Ahonen A, Ebeling H, Torniainen P, Heikkila J, Moilanen I (2000). Elevated hypothalamic/midbrain serotonin (monoamine) transporter availability in depressive drug-naive children and adolescents. Mol Psychiatry 5: 514–522.
Farde L, Ginovart N, Ito H, Lundkvist C, Pike VW, McCarron JA et al (1997). PET-characterization of carbonyl-c-11 WAY-100635 binding to 5-HT1a receptors in the primate brain. Psychopharmacology (Berl) 133: 196–202.
Furmark T, Tillfors M, Marteinsdottir I, Fischer H, Pissiota A, Langstrom B et al (2002). Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch Gen Psychiatry 59: 425–433.
Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S (2001). Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab 21: 1342–1353.
Halgren TA (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17: 490–519.
Halldin C, Tarkiainen J, Sovago J, Vercouillie J, Gulyas B, Guilloteau D et al (2002). [11C]DADAM – a fast equilibrium PET radioligand for the serotonin transporter. Neuroimage 16: S3.
Hawkins RA, Phelps ME, Huang SC (1986). Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood–brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab 6: 170–183.
Heinz A, Ragan P, Jones DW, Hommer D, Williams W, Knable MB et al (1998). Reduced central serotonin transporters in alcoholism. Am J Psychiatry 155: 1544–1549.
Hesse S, Barthel H, Murai T, Müller U, Müller D, Seese A et al (2003). Is correction for age necessary in neuroimaging studies of the central serotonin transporter? Eur J Nucl Med Mol Imaging 30: 427–430.
Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000). Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27: 1719–1722.
Huang Y, Hwang D-R, Narendran R, Talbot PS, Bae SA, Zhu Z et al (2002). [F-18]AFM is a specific PET radiotracer for the serotonin transporters: comparison with [C-11]AFM. Neuroimage 16: S2.
Hyttel J (1977). Neurochemical characterization of a new potent and selective serotonin uptake inhibitor: Lu 10-171. Psychopharmacology (Berl) 51: 225–233.
Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al (2002). Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+)McN5652. Biol Psychiatry 51: 715–722.
Ikoma Y, Suhara T, Toyama H, Ichimiya T, Takano A, Sudo Y et al (2002). Quantitative analysis for estimating binding potential of the brain serotonin transporter with [11C] McN5652. J Cereb Blood Flow Metab 22: 490–501.
Karramkam M, Dolle F, Valette H, Besret L, Bramoulle Y, Hinnen F et al (2002). Synthesis of a fluorine-18-labelled derivative of 6-nitroquipazine, as a radioligand for the in vivo serotonin transporter imaging with PET. Bioorg Med Chem 10: 2611–2623.
Kent JM, Coplan JD, Lombardo I, Hwang DR, Huang Y, Mawlawi O et al (2002). Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with [11C]McN 5652. Psychopharmacology (Berl) 164: 341–348.
Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991). Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11: 735–744.
Kretzschmar M, Brust P, Zessin J, Cumming P, Bergmann R, Johannsen B (2003). Autoradiographic imaging of the serotonin transporter in the brain of rats and pigs using S-([18F]fluoromethyl)-(+)-McN565. Eur J Neuropsychopharmacol 13: (in press).
Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D'Souza DC, Krystal J et al (2000). Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [123]I beta-CIT. Biol Psychiatry 47: 371–379.
Laruelle M, van Dyck C, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS et al (1994). Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J Nucl Med 35: 743–754.
Lin W, Celik A, Paczynski RP (1999). Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9: 44–52.
Lopez AD, Murray CC (1998). The global burden of disease, 1990–2020. Nat Med 4: 1241–1243.
Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L et al (1998). Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44: 1090–1098.
Marjamäki P, Zessin J, Eskola O, Grönroos T, Haaparanta M, Bergman J et al (2003). S-[18F]fluoromethyl-(+)-McN5652, a PET tracer for the serotonin transporter: evaluation in rats. Synapse 47: 45–53.
McBean DE, Ritchie IM, Olverman HJ, Kelly PA (1999). Effects of the specific serotonin reuptake inhibitor, citalopram, upon local cerebral blood flow and glucose utilisation in the rat. Brain Res 847: 80–84.
McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998). Positron emission tomographic evidence of toxic effect of MDMA (‘Ecstasy’) on brain serotonin neurons in human beings. Lancet 352: 1433–1437.
Menza MA, Palermo B, DiPaola R, Sage JI, Ricketts MH (1999). Depression and anxiety in Parkinson's disease: possible effect of genetic variation in the serotonin transporter. J Geriatr Psychiatry Neurol 12: 49–52.
Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K et al (2001). Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 158: 1843–1849.
Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984). A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15: 217–227.
Nelder JA, Mead R (1965). A simplex method for function minimization. Comput J 7: 308–313.
Parsey RV, Kegeles LS, Hwang DR, Simpson N, Abi-Dargham A, Mawlawi O et al (2000). In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. J Nucl Med 41: 1465–1477.
Perdew JP (1986). Density-functional approximation for the correlation energy of the inhomogenous electron gas. Phys Rev B 33: 8822–8824.
Petric A, Barrio JR, Namavari M, Huang SC, Satyamurthy N (1999). Synthesis of 3b-(4-[18F]fluoromethylphenyl)- and 3b-(2-[18F]fluoromethylphenyl)tropane-2b-carboxylic acid methylesters: new ligands for mapping brain dopamine transporter with positron emission tomography. Nucl Med Biol 26: 529–535.
Ricaurte GA, McCann UD, Szabo Z, Scheffel U (2000). Toxicodynamics and long-term toxicity of the recreational drug, 3, 4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’). Toxicol Lett 112–113: 143–146.
Saxena S, Brody AL, Ho ML, Alborzian S, Maidment KM, Zohrabi N et al (2002). Differential cerebral metabolic changes with paroxetine treatment of obsessive–compulsive disorder vs major depression. Arch Gen Psychiatry 59: 250–261.
Smith DF, Geday J (2001). PET neuroimaging of clomipramine challenge in humans: focus on the thalamus. Brain Res 892: 193–197.
Suehiro M, Ravert HT, Dannals RF, Scheffel U, Wagner HN (1992). Synthesis of a radiotracer for studying serotonin uptake sites with positron emission tomography: [11C] McN-5652-Z. J Labelled Compd Radiopharm 31: 841–849.
Szabo Z, McCann UD, Wilson AA, Scheffel U, Owonikoko T, Mathews WB et al (2002). Comparison of (+)-[11]C-McN5652 and [11]C-DASB as serotonin transporter radioligands under various experimental conditions. J Nucl Med 43: 678–692.
Szabo Z, Scheffel U, Mathews WB, Ravert HT, Szabo K, Kraut M et al (1999). Kinetic analysis of [11C]McN5652: a serotonin transporter radioligand. J Cereb Blood Flow Metab 19: 967–981.
Tsai SJ, Ouyang WC, Hong CJ (2002). Association for serotonin transporter gene variable number tandem repeat polymorphism and schizophrenic disorders. Neuropsychobiology 45: 131–133.
Yamamoto M, Suhara T, Okubo Y, Ichimiya T, Sudo Y, Inoue M et al (2002). Age-related decline of serotonin transporters in living human brain of healthy males. Life Sci 71: 751–757.
Zessin J, Eskola O, Brust P, Bergman J, Steinbach J, Lehikoinen P et al (2001). Synthesis of S-([18F]fluoromethyl)-(+)-McN5652 as a potential PET radioligand for the serotonin transporter. Nucl Med Biol 28: 857–863.
Zessin J, Gucker P, Ametamey SM, Steinbach J, Brust P, Vollenweider FX et al (1999). Efficient synthesis of enantiomerically pure thioester precursors of [11C] McN-5652 from racemic McN-5652. J Labelled Comp Radiopharm 42: 1301–1312.
Ziegler T (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91: 651–667.
Acknowledgements
We thank the cyclotron staff of the Rossendorf PET Center for providing [11C]carbon dioxide and [18F]fluoride. We also thank U Lenkeit, H Kasper, and N Dohn for technical assistance. This study was supported in part by a grant of DFG (STE 601/8-1). R Hinz is with a DFG research grant (Geschäftszeichen HI 769/1-1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brust, P., Hinz, R., Kuwabara, H. et al. In vivo Measurement of the Serotonin Transporter with (S)-([18F]fluoromethyl)-(+)-McN5652. Neuropsychopharmacol 28, 2010–2019 (2003). https://doi.org/10.1038/sj.npp.1300281
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.npp.1300281
Keywords
This article is cited by
-
Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography
Neuroscience Bulletin (2014)
-
Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans
European Journal of Nuclear Medicine and Molecular Imaging (2012)
-
Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743
European Journal of Nuclear Medicine and Molecular Imaging (2011)