Abstract
Molecular cloning has elucidated the sequence of a family of acetylcholine receptor subunits that are activated by nicotine. Subsequent studies on the localization of individual subunits and the physiological properties of nicotinic subunit combinations in vitro, have led to identification of subunit compositions of nicotinic receptors that may function in vivo, as the native receptor. A particular challenge for the field has been to use these molecular data to determine which individual nicotinic receptor subtype is responsible for mediating each of the behavioral effects of nicotine. Human and animal studies have shown that nicotine is reinforcing and likely responsible for the addictive properties of tobacco. In addition, nicotine has been shown to have effects on locomotion, cognition, affect, and pain sensitivity. Recent studies combining the techniques of molecular biology, pharmacology, electrophysiology, and behavioral analysis to analyze knock out mice that lack individual subunits of the nicotinic acetylcholine receptor, have helped identify the role of specific nicotinic subunits in some of these complex behaviors. These studies could ultimately be useful in designing specific nicotinic receptor agonists and antagonists that may have uses in the clinic.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Acri JB, Grunberg NE, Morse DE . (1991): Effects of nicotine on the acoustic startle reflex amplitude in rats. Psychopharmacology 104 (2): 244–248
Acri JB, Morse DE, Popke EJ, Grunberg NE . (1994): Nicotine increases sensory gating measured as inhibition of the acoustic startle reflex in rats. Psychopharmacology 114 (2): 369–374
Adler LE, Hoffer LD, Wiser A, Freedman R . (1993): Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150 (12): 1856–1861
Adler LE, Olincy A, Waldo M, Harris JO, Griffith J, Stevens K, Flach K, Nagarnoto H, Bickford P, Leonard S, Freedman R . (1998): Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24 (2): 189–202
Adler LE, Pachtrnan E, Franks RD, Pecevich M, Waldo MC, Freedman R . (1982): Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17 (6): 639–654
Alkondon M, Albuquerque EX . (1993): Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265 (3): 1455–1473
Allen RS, Cui C, Heinemann SF . (1998): Gene targeted knock out of the beta3 neuronal nicotinic acetylcholine receptor subunit. Soc Neurosci Abstr 24: 1341
Anand R, Conroy WG, Schoopfer R, Whiting P, Lindstrom J . (1991): Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 266 (17): 11192–11198
Bannon AW, Decker MW, Holladay MW, Curzon P, Donnelly-Roberts D, Puttfarcken PS, Bitner RS, Diaz A, Dickenson AH, Porsolt RD, Williams M, Arneric SP . (1998): Broad-spectrum, nonopioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279 (5347): 77–81
Baruch I, Hemsley DR, Gray JA . (1988): Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176 (10): 598–606
Benwell ME, Balfour DJ . (1992): The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105 (4): 849–856
Bitner RS, Nikkel AL, Curzon P, Arneric SP, Bannon AW, Decker MW . (1998): Role of the nucleus raphe magnus in antinociception produced by ABT-594: Immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. J Neurosci 18 (14): 5426–5432
Borlongan CY, Shytle RD, Ross SD, Shimizu T, Preeman TB, Cahill DW, Sanberg PR . (1995): Nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol 136 (2): 261–265
Breslau N . (1995): Psychiatric comorbidity of smoking and nicotine dependence. Behav Genet 25 (2): 95–101
Brioni JD, O'Neill AB, Kim DJB, Decker MW . (1993): Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol 238: 1–8
Brown ES, Rush AJ, McEwen BS . (1999): Hippocampal remodeling and damage by corticosteroids: Implications for mood disorders. Neuropsychopharmacology 21 (4): 474–484
Burling TA, Ziff DC . (1988): Tobacco smoking: A comparison between alcohol and drug abuse inpatients. Addict Behav 13: 185–190
Caine SB, Geyer MA, Swerdlow NP . (1991): Carbachol infusion into the dentate gyrus disrupts sensorimotor gating of startle in the rat. Psychopharmacology 105 (3): 347–354
Cao W, Burkholder T, Wilkins L, Collins AC . (1993): A genetic comparison of behavioral actions of ethanol and nicotine in the mirrored chamber. Pharmacol Biochem Behav 45 (4): 803–809
Cartier GE, Yoshikami D, Gray WR, Luo S, Olivera BM, McIntosh JM . (1996): A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J Biol Chem 271 (13): 7522–7528
Clarke PB, Fibiger HC . (1987): Apparent absence of nicotine-induced conditioned place preference in rats. Psychopharmacology 92 (1): 84–88
Clarke PB, Fu DS, Jakubovic A, Fibiger HC . (1988): Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther 246 (2): 701–708
Clarke PBS, Kumar R . (1983): Characterization of the locomotor stimulant action of nicotine in tolerant rats. Br J Pharmacol 80: 587–594
Clarke PBS, Pert A . (1985): Autoradiographic evidence for nicotine receptors in nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 348: 355–358
Cooper E, Couturier S, Ballivet M . (1991): Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350: 235–238
Corrigall WA, Franklin KM . (1989): Nicotine maintains robust self-administration in rats on a limited access schedule. Psychopharmacology 99: 473–478
Corrigall WA, Franklin KB, Coen KM, Clarke PB . (1992): The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107(23–3):285–289
Costall B, Kelly ME, Naylor RJ, Onaivi ES . (1989): The actions of nicotine and cocaine in a mouse model of anxiety. Pharmacol Biochem Behav 33: 197–203
Cox BM, Goldstein A, Nelson WT . (1984): Nicotine self-administration in rats. Br J Pharmacol 83 (1): 49–55
Damaj MI, Martin BR . (1993): Calcium agonists and antagonists of the dihydropyridine type: Effect on nicotine-induced antinociception and hypomotility. Drug Alcohol Depend 32 (1): 73–79
Decker MW, Brioni ID, Bannon AW, Arneric SP . (1995): Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS therapeutics. Life Sci 56 (8): 545–570
Della Casa V, Hofer I, Feldon J . (1999a): Latent inhibition in smokers vs. nonsmokers: Interaction with number or intensity of preexposures? Pharmacol Biochem Behav 62 (2): 353–359
Della Casa V, Hofer I, Weiner I, Feldon J . (1999b): Effects of smoking status and schizotypy on latent inhibition. J Psychopharmacol 13 (1): 45–57
Dineley-Miller K, Patrick J . (1992): Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Mol Brain Res 16(3–4):339–344
Donnelly-Roberts DL, Puttfarcken PS, Kuntzweiler TA, Briggs CA, Anderson DJ, Campbell JE, Piattoni-Kaplan M, McKenna DG, Wasicak JT, Holladay MW, Williams M, Arneric SP . (1998): ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: A novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors. I. In vitro characterization. J Pharmacol Exp Ther 285 (2): 777–786
Dunnett SB, Martel FL . (1990): Proactive interference effects on short-term memory in rats. I. Basic parameters and drug effects. Behav Neurosci 104 (5): 655–665
Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S . (1994): Alpha 9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79: 705–715
Elmes D, Jarrard L, Swart P . (1975): Helplessness in hippocampectomized rats: Response perseveration? Physiol Psychol 3 (1): 51–55
Epping-Jordan MP, Watkins SS, Koob GF, Markou A . (1998): Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393: 76–79
Everitt BJ, Robbins TW . (1997): Central cholinergic systems and cognition. Annu Rev Psychol 48: 649–684
Faiman CP, de Erausquin GA, Baratti CM . (1991): The enhancement of retention induced by vasopressin in mice may be mediated by an activation of central nicotinic cholinergic mechanisms. Behav Neural Biol 56: 183–199
Feldon J, Weiner I . (1992): From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia. J Psychiatry Res 26 (4): 345–366
File SE, Kenny PJ, Ouagazzal AM . (1998): Bimodal modulation by nicotine of anxiety in the social interaction test: Role of the dorsal hippocampus. Behav Neurosci 112 (6): 1423–1429
Flores CM, Rogers SW, Pabreza LA, Wolff BB, Kellar KJ . (1992): A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha4-subunit and beta2-subunit and is upregulated by chronic nicotine treatment. Mol Pharmacol 41 (1): 31–37
Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W . (1997): Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94 (2): 587–592
Freedman R, Hall M, Adler EE, Leonard S . (1995): Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38 (1): 22–33
Fu Y, Matta SG, James TJ, Sharp BM . (1998): Nicotine-induced norepinephrine release in the rat amygdala and hippocampus is mediated through brainstem nicotinic cholinergic receptors. J Pharmacol Exp Ther 284 (3): 1188–1196
Galzi J-L, Revah F, Bessis A, Changeux J-P . (1991): Functional architecture of the nicotinic acetylcholine receptor: From electric organ to brain. Annu Rev Pharmacol 31: 37–72
Gould TJ, Wehner JM . (1999): Nicotine enhancement of contextual fear conditioning. Behav Brain Res 102(1–2):31–39
Grady S, Marks MJ, Wonnacott S, Collins AC . (1992): Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59 (3): 848–856
Gray JA . (1988): Behavioural and neural-system analyses of the actions of anxiolytic drugs. Pharmacol Biochem Behav 29 (4): 767–769
Gray JA . (1998): Integrating schizophrenia. Schizophr Bull 24 (2): 249–266
Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA . (1996): Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383: 713–716
Henningfield JE, Miyasato K, Jasinski DR . (1983): Cigarette smokers self-administer intravenous nicotine. Pharmacol Biochem Behav 19: 887–890
Hentall ID, Gollapudi L . (1995): The interpeduncular nucleus regulates nicotine's effects on free-field activity. Neuroreport 6 (18): 2469–2472
Hildebrand BE, Nomikos GG, Bondjers C, Nisell M, Svensson TH . (1997): Behavioral manifestations of the nicotine abstinence syndrome in the rat: Peripheral versus central mechanisms. Psychopharmacology 129 (4): 348–356
Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH . (1998): Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res 779(1–2):214–225
Hill JA Jr, Zoli M, Bourgeois J-P, Changeux J-P . (1993): Immunocytochemical localization of a neuronal nicotinic receptor: The β2 subunit. J Neurosci 13 (4): 1551–1568
Horger BA, Giles MK, Schenk S . (1992): Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology 107(2–3):271–276
Hughes JR, Higgins ST, Bickel WK . (1994): Nicotine withdrawal versus other drug withdrawal syndromes: Similarities and dissimilarities. Addiction 89 (11): 1461–1470
Huston-Lyons D, Sarkar M, Kornetsky C . (1993): Nicotine and brain-stimulation reward: Interactions with morphine, amphetamine and pimozide. Pharmacol Biochem Behav 46 (2): 453–457
James JR, Nordberg A . (1995): Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: Emphasis on Alzheimer's disease and Parkinson's disease. Behav Genet 25 (2): 149–159
Joseph MH, Peters SL, Gray JA . (1993): Nicotine blocks latent inhibition in rats: Evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than pre-exposure. Psychopharmacology 110 (2): 187–192
Jurna I, Krauss P, Baldauf J . (1993): Depression by nicotine of pain-related nociceptive activity in the rat thalamus and spinal cord. Clin Investig 72 (1): 65–73
Kathol RG, Jaeckle RS, Lopez JF, Meller WH . (1989): Pathophysiology of HPA axis abnormalities in patients with major depression: An update. Am J Psychiatry 146 (3): 311–317
Kelsey J, Baker M . (1983): Ventromedial septal lesions in rats reduce the effects of inescapable shock on escape performance and analgesia. Behav Neurosci 97 (6): 945–961
Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L, Beckman A, Steffen C, Zheng Y-J, Marotti L, Self DW, Tkatch T, Baranauskas G, Surmeier DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ . (1999): Expression of the transcription factor Delta FosB in the brain controls sensitivity to cocaine. Nature 401: 272–276
Koob GF . (1992): Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13 (5): 177–184
Lawrence AD, Sahakian BJ . (1998): The cognitive psychopharmacology of Alzheimer's disease: Focus on cholinergic systems. Neurochem Res 23 (5): 787–794
Le Novère N, Changeux J-P . (1995): Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. J Mol Evol 40: 155–172
Le Novère N, Zoli M, Changeux J-P . (1996): Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8: 2428–2439
Le Novère N, Zoli M, Léna C, Ferrari R, Picciotto MR, Changeux J-P . (1999): Involvement of alpha 6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport 10 (12): 2497–2501
Léna CJ, Changeux IP, Mulle C . (1993): Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13 (6): 2680–2688
Léna C, de Kerchove D'Exaerde A, Cordero-Erausquin M, Le Novère N, Arroyo-Jimenez M, Changeux J-P . (1999): Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc Natl Acad Sci USA 96 (21): 12126–12131
Levin ED . (1992): Nicotinic systems and cognitive function. Psychopharmacology 108 (4): 417–431
Levin ED, Simon BB . (1998): Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138(3–4):217–230
Listerud M, Brussaard AB, Devay P, Colman DR, Role LW . (1991): Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Science 254: 1518–1521
Lu Y, Grady S, Marks MJ, Picciotto M, Changeux JP, Collins AC . (1998): Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J Pharmacol Exp Ther 287 (2): 648–657
Luetje CW, Patrick J . (1991): Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci 11 (3): 837–845
Luntz-Leybman V, Bickford PC, Freedman R . (1992): Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587 (1): 130–136
MacDermott AB, Role LW, Siegelbaum SA . (1999): Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22: 443–485
Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB . (1992): Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43 (3): 779–784
Marin P, Maus M, Desagher S, Glowinski J, Premont J . (1994): Nicotine protects cultured striatal neurones against N-methyl-D-aspartate receptor-mediated neurotoxicity. Neuroreport 5 (15): 1977–1980
Marks M, Campbell S, Romm E, Collins A . (1991): Genotype influences the development of tolerance to nicotine in the mouse. J Pharmacol Exp Ther 259 (1): 392–402
Marks MJ, Stitzel JA, Collins AC . (1989): Genetic influences on nicotine responses. Pharmacol Biochem Behav 33: 667–678
Marks MJ, Whiteaker P, Calcaterra J, Stitzel JA, Bullock AE, Grady SR, Picciotto MR, Changeux JP, Collins AC . (1999): Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta 2 subunit. J Pharmacol Exp Therap 289 (2): 1090–1103
Marshall DL, Redfern PH, Wonnacott S . (1997): Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: Comparison of naive and chronic nicotine-treated rats. J Neurochem 68 (4): 1511–1519
Marubio L, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Léna C, Le Novère N, de Kerchove d'Exaerde A, Huchet M, Damaj MI, Changeux J-P . (1999): Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398: 805–810
McEwen BS, Sapolsky RM . (1995): Stress and cognitive function. Curr Opin Neurobiol 5 (2): 205–216
McGaugh JL, Cahill L . (1997): Interaction of neuromodulatory systems in modulating memory storage. Behav Brain Res 83(1–2):31–38
McGaugh JL, Cahill L, Roozendaal B . (1996): Involvement of the amygdala in memory storage: Interaction with other brain systems. Proc Natl Acad Sci USA 93 (24): 13508–13514
McGehee DS, Heath MJ, Crelber S, Devay P, Role LW . (1995): Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269 (5231): 1692–1696
McGehee DS, Role LW . (1996): Presynaptic ionotropic receptors. Curr Opin Neurobiol 6 (3): 342–349
Menard J, Treit D . (1996): Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol Behav 60 (3): 845–853
Merlo Pich E, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R, Chiamulera C . (1997): Common neural substrates for the addictive properties of nicotine and cocaine. Science 275: 83–86
Mifsud J-C, Hernandez L, Hoebel BG . (1989): Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res 478: 365–367
Museo E, Wise RA . (1990): Microinjections of a nicotinic agonist into dopamine terminal fields: Effects on locomotion. Pharmacol Biochem Behav 37 (1): 113–116
Museo E, Wise RA . (1994): Place preference conditioning with ventral tegmental injections of cytisine. Life Sci 55 (15): 1179–1186
Museo E, Wise RA . (1995): Cytisine-induced behavioral activation: Delineation of neuroanatomical locus of action. Brain Res 607 (2): 257–263
Nisell M, Nomikos GG, Svensson TH . (1994): Infusion of nicotine in the ventral segmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75 (6): 348–352
Nisell M, Nomikos GG, Svensson TH . (1995): Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 16 (3): 157–162
Nordberg A . (1994): Human nicotinic receptors—their role in aging and dementia. Neurochem Intl 25 (1): 93–97
Nye HE, Nestler EJ . (1996): Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol Pharmacol 49 (4): 636–645
Orr-Urtreger A, Goldner FM, Saeki M, Lorenzo I, Golberg L, De Biasi M, Dani JA, Patrick JW, Beaudet AL . (1997): Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 17 (23): 9165–9171
Ouagazzal AM, Kenny PJ, File SE . (1999): Modulation of behaviour on trials 1 and 2 in the elevated plus-maze test of anxiety after systemic and hippocampal administration of nicotine. Psychopharmacology 144 (1): 54–60
Overstreet DH . (1993): The Flinders sensitive line rats: A genetic animal model of depression. Neurosci Biobehav Rev 17 (1): 51–68
Pauly JR, Collins AC . (1993): An autoradiographic analysis of alterations in nicotinic cholinergic receptors following one week of corticosterone supplementation. Neuroendocrinology 57: 262–271
Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A . (1998): Alpha-7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating—a behavioral characterization of ACR7-deficient mice. Learning & Memory 5(4–5):302–316
Picciotto MR, Zoli M, Léna C, Bessis A, Lallemand Y, Le Novère N, Vincent P, Merlo Pich E, Brulet P, Changeux J-P . (1995): Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374: 65–67
Picciotto MR, Zoli M, Rimondini R, Léna C, Marubio LM, Merlo Pich E, Fuxe K, Changeux JP . (1998): Acetylcholine receptors containing the beta-2 subunit are involved in the reinforcing properties of nicotine. Nature 391: 173–177
Picciotto MR, Zoli M, Zachariou V, Changeux J-P . (1997): Contribution of nicotinic acetylcholine receptors containing the β2 subunit to the behavioural effects of nicotine. Biochem Soc Trans 25: 824–829
Pidoplichko VI, Debiasi M, Williams JT, Dani JA . (1997): Nicotine activates and desensitizes midbrain dopamine neurons. Nature 396: 401–404
Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L . (1996): Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380: 347–351
Rasmussen K, Czachura JF . (1995): Nicotine withdrawal leads to increased firing rates of midbrain dopamine neurons. Neuroreport 7 (1): 329–332
Rathouz MM, Berg DK . (1994): Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J Neurosci 14(11 Pt 2):6935–6945
Riekkinen P Jr, Riekkinen M, Sirvio J . (1993): Cholinergic drugs regulate passive avoidance performance via the amygdala. J Pharmacol Exp Ther 267 (3): 1484–1492
Risner ML, Goldberg SR . (1983): A comparison of nicotine and cocaine self-administration in the dog: Fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J Pharmacol Exp Ther 224 (2): 319–326
Roberts RG, Stevenson JE, Westerman RA, Pennefather J . (1995): Nicotinic acetylcholine receptors on capsaicin-sensitive nerves. Neuroreport 6 (11): 1578–1582
Rochford J, Sen AP, Quirion R . (1996): Effect of nicotine and nicotinic receptor agonists on latent inhibition in the rat. J Pharmacol Exp Ther 227 (3): 1267–1275
Role LW . (1992): Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr Opin Neurobiol 2 (3): 254–262
Rollins Y, Stevens K, Harris K, Hall M, Rose G, Leonard S . (1993): Reduction in auditory gating following intra-cerebroventricular application of alpha-bungarotoxin binding site ligands and alpha-7 antisense oligonucleotides. Soc Neurosci Abstr 19: 837
Rowell PP . (1995): Nanomolar concentrations of nicotine increase the release of [3H]dopamine from rat striatal synaptosomes. Neurosci Lett 189 (3): 171–175
Rush AJ, Giles DE, Schlesser MA, Orsulak PJ, Parker CR Jr, Weissenburger M, Crowley GT, Khatami M, Vasavada N . (1996): The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry 57 (10): 470–484
Salin-Pascual RJ, de la Fuente JR, Galicia-Polo L, Drucker-Colin R . (1995): Effects of transdermal nicotine on mood and sleep in nonsmoking major depressed patients. Psychopharmacology 121 (4): 476–479
Salin-Pascual RJ, Rosas M, Jiminez Genchi A, Rivera Meza BL, Delgado Parra V . (1996): Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J Clin Psychiatry 57 (9): 387–389
Sargent PB . (1993): The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16: 403–443
Schilstrom B, Nomikos GG, Nisell M, Hertel P, Svensson TH . (1998a): N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82 (3): 781–789
Schilstrom B, Svensson HM, Svensson TH, Nomikos GG . (1998b): Nicotine and food induced dopamine release in the nucleus accumbens of the rat: Putative role of alpha7 nicotinic receptors in the ventral tegmental area. Neuroscience 85 (4): 1005–1009
Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW . (1993): Molecular cloning, functional properties, and distribution of rat brain-alpha7—a nicotinic cation channel highly permeable to calcium. J Neurosci 13 (2): 596–604
Semba J, Mataki C, Yamada S, Nankai M, Toru M . (1998): Antidepressantlike effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry 43 (5): 389–391
Shippenberg TS, Heidbreder C, Lefevour A . (1996): Sensitization to the conditioned rewarding effects of morphine: Pharmacology and temporal characteristics. Eur J Pharmacol 299(1–3):33–39
Shoaib M, Stolerman IP, Kumar RC . (1994): Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology 113(3–4):445–452
Smith BR, Horan JT, Gaskin S, Amit Z . (1999): Exposure to nicotine enhances acquisition of ethanol drinking by laboratory rats in a limited access paradigm. Psychopharmacology 142 (4): 408–412
Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM . (1996): Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15 (2): 152–162
Stevens KE, Kem WR, Mahnir VM, Freedman R . (1998): Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136 (4): 320–327
Stevens KE, Wear KD . (1997): Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57 (4): 869–874
Suh HW, Song DK, Choi SR, Chung KM, Kim YH . (1996): Nicotine enhances morphine- and beta-endorphin-induced antinociception at the supraspinal level in the mouse. Neuropeptides 30 (5): 479–484
Summers KL, Giacobini E . (1995): Effects of local and repeated systemic administration of (-)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20 (6): 753–759
Suzuki T, Ise Y, Tsuda M, Maeda J, Misawa M . (1996): Mecamylamine-precipitated nicotine withdrawal aversion in rats. Eur J Pharmacol 314 (3): 281–284
Swerdlow N, Caine S, Braff D, Geyer M . (1992): The neural substrates of sensorimotor gating of the startle reflex: A review of recent findings and their implications. J Psychopharmacol 6 (2): 176–190
Thornton JC, Dawe S, Lee C, Capstick C, Corr PJ, Cotter P, Frangou S, Gray NS, Russell MA, Gray JA . (1996): Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology 127 (2): 164–173
Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, Kling MA . (1999): Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology 142 (2): 193–199
Traynor JR . (1998): Epibatidine and pain. Br J Anaesth 81 (1): 69–76
Treit D, Menard J . (1997): Dissociations among the anxiolytic effects of septal, hippocampal, and amygdaloid lesions. Behav Neurosci 111 (3): 653–658
Tripathi HL, Mattin BR, Aceto MD . (1982): Nicotine-induced antinociception in rats and mice: Correlation with nicotine brain levels. J Pharm Exp Therap 221 (1): 91–96
US Department of Health and Human Services. (1988): The Health Consequences of Smoking: Nicotine Addiction. A Report of the Surgeon General. Washington, D.C. U.S. Government Printing Office
Vale A, Green S . (1996): Effects of chlordiazepoxide, nicotine and d-amphetamine in the rat potentiated startle model of anxiety. Behav Pharmacol 7 (2): 138–143
van Duijn CM, Hofman A . (1991): Relation between nicotine intake and Alzheimer's disease. BMJ 302 (6791): 1491–1494
Vetter DE, Liberrman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB . (1999): Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23 (1): 93–103
Vetter DE, Stitzel JA, Mann J, Elgoyhen AB, Saffiote J, Barharun J, Collins AC, Heinemann SF . (1997): Altered cochlear efferent fiber innervation and acoustic startle reflex in alpha9 nAChR subunit knockout mice. Soc Neurosci Abstr 23(1–2):732
Vidal C, Changeux JP . (1993): Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 56 (1): 23–32
Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW . (1989): Distribution of Alpha2, Alpha3, Alpha4, and Beta2 neuronal nicotinic subunit mRNAs in the central nervous system: A hybridization histochemical study in rat. J Comp Neurol 284: 314–335
Weiner I . (1990): Neural substrates of latent inhibition: The switching model. Psychol Bull 108 (3): 442–461
Weiner I, Feldon J . (1997): The switching model of latent inhibition: An update of neural substrates. Behav Brain Res 88 (1): 11–25
Wewers ME, Dhatt RK, Snively TA, Tejwani GA . (1999): The effect of chronic administration of nicotine on antinociception, opioid receptor binding and met-enkelphalin levels in rats. Brain Res 822(1–2):107–113
Whiteaker P, Marks MJ, Mclntosh JM, Picciotto MR, Changeux J-P, Collins AC . (1998): Location and composition of α-conotoxin MII (α-Ctx MII) binding nicotinic receptors in mouse brain. Soc Neurosci Abstr 24: 836
Wonnacott S, Drasdo A, Sanderson E, Rowell P . (1990): Presynaptic nicotinic receptors and the modulation of transmission release. In Block G, Marsh J (eds), The Biology of Nicotine Dependence. Chichester, Wiley, pp 87–105
Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG . (1989): Presynaptic modulation of transmitter release by nicotinic receptors. In Nordberg A, Fuxe K, Holmstedt B, Sundwall A (eds), Progress in Brain Research, Amsterdam, The Netherlands, Elsevier Science Publishers, pp 157–163
Xu W, Gelber S, Orr-Urtreger A, Armstrong D, Lewis RA, Ou CN, Patrick J, Role L, De Biasi M, Beaudet AL . (1999a): Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 96 (10): 5746–5751
Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe C, Armstrong D, Patrick J, Role L, Beaudet A, De Biasi M . (1999b): Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 19 (21)): 9298–9305
Xu W, Sutcliffe CB, Lorenzo I, Goldberg L, Dang H, Patrick J, Beaudet AL, Orr-Urtreger A . (1997): Gene targeting of the alpha7 and beta2 subunits and the beta4, alpha3 and alpha5 cluster of neuronal nicotinic acetylcholine receptors. Soc Neurosci Abstr 23: 391
Yang X, Criswell HE, Breese GR . (1996): Nicotine-induced inhibition in medial septum involves activation of presynaptic nicotinic cholinergic receptors on gamma-aminobutyric acid-containing neurons. J Pharmacol Exp Ther 276 (2): 482–489
Yu CR, Role LW . (1998): Functional contribution of the alpha-7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurons. J Physiol 509 (3): 651–665
Zachariou V, Changeux J-P, Picciotto MR . (1997): Place preference conditioning by cocaine and morphine in mice lacking the high affinity neuronal nicotinic receptor. Soc Neurosci Abstr 23: 1098
Zarrindast MR, Pazouki M, Nassiri-Rad S . (1997): Involvement of cholinergic and opioid receptor mechanisms in nicotine-induced antinociception. Pharmacol Toxicol 81 (5): 209–213
Zoli M, Jansson A, Sykova E, Agnati LF, Fuxe K . (1999a): Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20 (4): 142–150
Zoli M, Le Novère N, Hill JA, Changeux J-P . (1995): Developmental regulation of nicotinic receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 15 (3): 1912–1939
Zoli M, Léna C, Picciotto MR, Changeux J-P . (1998): Identification of four classes of brain nicotinic receptors using β2-mutant mice. J Neurosci 18: 4461–4472
Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux J-P . (1999b): Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J 18 (5): 1235–1244
Acknowledgements
The authors would like to thank Robert Beech and Diann Stedman for critical reading of the manuscript. This work was supported by grants DA10455, DA00167, and DA07290 from the National Institutes of Health and The Christiane Brooks Johnson Foundation.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Picciotto, M., Caldarone, B., King, S. et al. Nicotinic Receptors in the Brain: Links between Molecular Biology and Behavior. Neuropsychopharmacol 22, 451–465 (2000). https://doi.org/10.1016/S0893-133X(99)00146-3
Received:
Revised:
Accepted:
Issue date:
DOI: https://doi.org/10.1016/S0893-133X(99)00146-3
Keywords
This article is cited by
-
Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system
Translational Psychiatry (2023)
-
Nicotinic regulation of microglia: potential contributions to addiction
Journal of Neural Transmission (2023)
-
Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide
Environmental Science and Pollution Research (2023)
-
Effect of progesterone administration in male and female smokers on nicotine withdrawal and neural response to smoking cues: role of progesterone conversion to allopregnanolone
Biology of Sex Differences (2022)
-
Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia
CNS Drugs (2022)