Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Economic Study

Cost-effectiveness of CD34+ dose in peripheral blood progenitor cell transplantation for non-Hodgkin’s lymphoma patients: a single centre study

Abstract

Intensive high-dose chemotherapy with peripheral blood progenitor cell (PBPC) transplantation is a common strategy for aggressive non-Hodgkin’s lymphomas (NHL). A retrospective cost-effectiveness analysis of CD34+ cell dose was carried out. Between 1994 and 1998, 28 patients were included. Efficacy was measured by the length of aplasia. Data collection concerned the period from graft day until discharge from hospital, and the post-graft period until graft day +100. Patients transplanted using a cell dose greater than 5 × 106/kg were found to have a faster hematological recovery. Average length of post-graft hospitalization was shorter and fewer blood products were required for patients with more than 5 × 106/kg CD34+ cells transplanted. Hospitalization was the major cost driver. A large reduction in procedure cost was obtained with a CD34+ cell count higher than 5 × 106/kg (−US$2740, −11%). This difference was directly related to hospitalization (−US$860) and platelet units transfused (−US$1,340). A sensitivity analysis showed the robustness of results. Our findings indicated that a CD34+ cell dose higher than 5 × 106/kg was more cost-effective than a lower dose in NHL patients. The collection of 5 × 106/kg CD34+ cells appeared necessary to optimize the PBPC procedure. Bone Marrow Transplantation (2000) 25, 997–1002.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Philip T, Guglielmi C, Hagenbeek A et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma New Engl J Med 1995 333: 1540–1545

    Article  CAS  Google Scholar 

  2. Weaver C, Schwartzberg L, Zhen B et al. High dose chemotherapy and peripheral blood stem cell infusion in patients with non-Hodgkin’s lymphoma: results of outpatient treatment in community cancer centers Bone Marrow Transplant 1997 20: 753–760

    Article  CAS  Google Scholar 

  3. Mills W, Chopra A, McMillan A et al. BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non Hodgkin’s lymphoma J Clin Oncol 1995 13: 588–595

    Article  CAS  Google Scholar 

  4. Haioun C, Lepage E, Gisselbrecht C et al. High-dose therapy followed by stem cell transplantation in partial response after first-line induction therapy for aggressive non-Hodgkin’s lymphoma Ann Oncol 1998 9: (Suppl.1) 5S-8S

    Article  Google Scholar 

  5. Perry A, Goldstone A . High dose therapy for diffuse large-cell lymphoma in first remission Ann Oncol 1998 9: (Suppl.1) 9S-14S

    Article  Google Scholar 

  6. Schmitz N, Linch D, Dreger P et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone marrow transplantation in lymphoma patients Lancet 1996 347: 353–357

    Article  CAS  Google Scholar 

  7. Hartmann O, Le Corroller A, Blaise D et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs. A randomized, controlled trial Ann Intern Med 1997 126: 600–607

    Article  CAS  Google Scholar 

  8. Faucher C, Le Corroller A, Blaise D et al. Comparison of G-CSF primed peripheral blood progenitor cells and bone marrow auto transplantation: clinical and cost-effectiveness Bone Marrow Transplant 1994 14: 895–901

    CAS  PubMed  Google Scholar 

  9. Uyl-de Groot C, Richel D, Rutten F . Peripheral blood progenitor cell transplantation mobilised by r-metHuG-CSF (filgrastim); a less costly alternative to autologous bone marrow transplantation Eur J Cancer 1994 30: 1631–1635

    Article  Google Scholar 

  10. Woronoff-Lemsi MC, Arveux P, Limat S et al. Cost comparative study of autologous peripheral blood progenitor cells (PBPC) and bone marrow (ABM) transplantations for non-Hodgkin’s lymphoma patients Bone Marrow Transplant 1997 20: 975–982

    Article  CAS  Google Scholar 

  11. Smith T, Hillner B, Schmitz N et al. Economic analysis of randomized clinical trial to compare filgrastim-mobilized peripheral blood progenitor cell transplantation and autologous bone marrow transplantation in patients with Hodgkin’s and non-Hodgkin’s lymphoma J Clin Oncol 1997 15: 5–10

    Article  CAS  Google Scholar 

  12. Ministère de l'Emploi et de la Solidarité . Comptes Nationaux de la Santé 1995–1996–1997

  13. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral blood stem cells J Clin Oncol 1995 13: 2547–2555

    Article  CAS  Google Scholar 

  14. Weaver C, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy Blood 1995 86: 3961–3969

    CAS  PubMed  Google Scholar 

  15. Faucher C, Le Corroller A, Chabannon C et al. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery J Hematother 1996 5: 663–670

    Article  CAS  Google Scholar 

  16. Hermouet S, Niaussat A, Briec A et al. Analysis of platelet recovery after autologous transplantation with G-CSF mobilized CD34+ cells purified from leukapheresis products Hematol Cell Ther 1997 39: 317–325

    Article  CAS  Google Scholar 

  17. Olivieri A, Offidani M, Montanari M et al. Factors affecting hematopoietic recovery after high-dose therapy and autologous peripheral blood progenitor cell transplantation: a single center experience Haematologica 1998 83: 329–337

    CAS  PubMed  Google Scholar 

  18. Glaspy J, Lu Z, Wheeler C et al. Economic rationale for infusing optimal numbers of CD34+ cells in peripheral blood progenitor cell transplants Blood 1997 90: (Suppl.1) 370a (Abstr.1646)

    Google Scholar 

  19. Weaver C, Birch R, Schulman K . Effect of cell dose on resource utilization in patients undergoing transplant with peripheral blood progenitor cells Blood 1997 90: (Suppl.1) 370a (Abstr.1647)

    Google Scholar 

  20. Kiss J, Rybka W, Winkelstein A et al. Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation Bone Marrow Transplant 1997 19: 303–310

    Article  CAS  Google Scholar 

  21. Diaz M, Alegre A, Villa M et al. Pediatric experience with autologous peripheral blood progenitor cell transplantation: influence of CD34+ cell dose in engraftment kinetics Bone Marrow Transplant 1996 18: 699–703

    CAS  Google Scholar 

  22. Bredeson C, Malcolm J, Davis M et al. Cost analysis of the introduction of PBPC for autologous transplantation: effect of switching from bone marrow (BM) to peripheral blood progenitor cells (PBPC) Bone Marrow Transplant 1997 20: 989–996

    Article  Google Scholar 

  23. Direction des Finances et de l'Information, CHU de Besançon. Comptabilité Analytique 1997

  24. Journal Officiel du 28 Décembre 1997. Arrêté du 23 décembre 1997 relatif au Tarif de Cession des Produits Sanguins Labiles

  25. Dixon WJ . BMDP statistical software University of California: Berkeley, CA 1992

  26. Eisenberg J . A guide to the economic analysis of clinical practices JAMA 1989 262: 2879–2886

    Article  CAS  Google Scholar 

  27. Siegel J, Torrance G, Russel L et al. Guidelines for pharmacoeconomic studies Pharm Economics 1997 11: 159–168

    Article  CAS  Google Scholar 

  28. Milpied N, Deconinck E, Gaillard F et al. Autologous stem cell transplantation (ASCT) for disseminated high or intermediate grade NHL in first response: analysis of outcome in a prospective multicenter trial Ann Oncol 1996 7: (Suppl3) 174 (Abstr.646)

    Google Scholar 

  29. Milpied N, Lamy T, Deconinck E et al. Frontline high-dose therapy (HDT) with autologous stem cell support (ASCT) in young patients with disseminated intermediate or high grade lymphomas: evaluation of feasibility and efficacy in consecutive prospective trials Br J Haematol 1998 102: 237 (Abstr.945)

    Google Scholar 

  30. The Non-Hodgkin’s Lymphoma Pronostic Factor Project . A predictive model for aggressive non Hodgkin’s lymphomas New Engl J Med 1993 329: 987–994

    Article  Google Scholar 

  31. Chabannon C, Le Coroller A, Faucher C et al. Patient condition affects the collection of peripheral blood progenitors after priming with recombinant granulocyte colony-stimulating factor J Hematother 1995 4: 171–179

    Article  CAS  Google Scholar 

  32. Drenou B . Flow cytometry for CD34 determination in hematopoietic grafts Hematol Cell Ther 1996 38: 505–512

    Article  CAS  Google Scholar 

  33. Lumley M, McDonald D, Czarnecka H et al. Quality assurance of CD34+ cell estimation in leukapheresis products Bone Marrow Transplant 1996 18: 791–796

    CAS  PubMed  Google Scholar 

  34. Weaver C, Potz J, Redmond J . Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34+ cell content Bone Marrow Transplant 1997 19: 1103–1110

    Article  CAS  Google Scholar 

  35. Watts M, Sullivan A, Leverett D et al. Back-up bone marrow is frequently inefficient in patients with poor peripheral blood stem cell mobilization J Clin Oncol 1998 16: 1554–1560

    Article  CAS  Google Scholar 

  36. Pecora A, Preti R, Gleim G et al. CD34+CD33 cells influence days to engraftment and transfusion requirements in autologous blood stem cell recipients J Clin Oncol 1998 16: 2093–2104

    Article  CAS  Google Scholar 

  37. Ketterer N, Salles G, Raba M et al. High CD34+ cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation Blood 1998 91: 3148–3155

    CAS  PubMed  Google Scholar 

  38. Elliot C, Samson D, Armitage S et al. When to harvest blood stem cells after mobilization therapy: prediction of CD34-positive cell yield by preceding day CD34-positive concentration in peripheral blood J Clin Oncol 1996 14: 970–973

    Article  Google Scholar 

  39. Moskowitz C, Glassman J, Wuest D et al. Factors affecting mobilization of peripheral blood progenitor cells in patients with lymphoma Clin Cancer Res 1998 4: 311–316

    CAS  PubMed  Google Scholar 

  40. Stiff P . Management strategies for the hard-to-mobilize patient Bone Marrow Transplant 1999 23: S29–S33

    Article  Google Scholar 

  41. Reiffers J, Caillot C, Dazey B et al. Infusion of expanded CD34+ selected cells can abrogate post myeloablative chemotherapy neutropenia in patients with hematologic malignancies Proc ASCO 1999 18: 54a (Abstr.199)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limat, S., Woronoff-Lemsi, M., Deconinck, E. et al. Cost-effectiveness of CD34+ dose in peripheral blood progenitor cell transplantation for non-Hodgkin’s lymphoma patients: a single centre study. Bone Marrow Transplant 25, 997–1002 (2000). https://doi.org/10.1038/sj.bmt.1702378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702378

Keywords

This article is cited by

Search

Quick links