Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Leukemia

Tissue-restricted T cell alloresponses across HLA barriers: selection and identification of leukemia-restricted CTL in HLA-mismatched stimulator–responder pairs

Summary:

Exploiting the graft-versus-leukemia (GVL) effect in mismatched transplants requires its separation from graft-versus-host disease (GVHD). We generated leukemia-specific cytotoxic T lymphocytes (CTL) in three haplotype-mismatched, two class I-mismatched and two single HLA-A locus-matched stimulator–responder pairs. Six patients with chronic myelogenous leukemia and one patient with acute myeloid leukemia transformed from MDS were studied. CTL generated after 10 days stimulation with unselected leukemic peripheral blood mononuclear cells inhibited leukemic CFU-GM colony growth (>85% at 10:1 effector:target ratio) with no third-party colony inhibition. In five pairs, responders were cultured separately with leukemia cells, PHA-B or LCL from the stimulator. After 2–4 restimulations, the T cell repertoire was examined by flow analysis using Vβ-specific antibodies. Test cultures (but not controls) showed preferential expansion of 1–4 Vβ families either common to two or more stimulators or unique to a particular stimulator. Notably, we elicited leukemia-specific TCR Vβ expansions on four out of five occasions. In two pairs, responder cells selected for the appropriate leukemia-specific Vβ family were shown to have leukemia-specific cytotoxicity. These leukemia-restricted T-cells were CD8+ or CD4+ and CD25+ or CD57+. The results support the development of strategies to selectively deplete GVHD and conserve GVL reactivity in mismatched transplants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Henslee-Downey PJ, Abhyankar SH, Parrish RS, Pati AR . Use of partially mismatched related donors extends access to allogeneic marrow transplant. Blood 1997; 89: 3864–3872.

    CAS  PubMed  Google Scholar 

  2. Henslee-Downey P . Mismatched bone marrow transplantation. Curr Opin Oncol 1995; 7: 115–121.

    Article  CAS  PubMed  Google Scholar 

  3. Szydlo R, Goldman JM, Klein JP, Gale RP . Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol 1997; 15: 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  4. Sykes M, Sachs DH . Genetic analysis of the anti-leukemic effect of mixed allogeneic bone marrow transplantation. Transplant Proc 1989; 21: 3022–3024.

    CAS  PubMed  Google Scholar 

  5. Aizawa S, Sado T . Graft-versus-leukemia effect in MHC compatible and- incompatible allogeneic bone marrow transplantation of radiation-induced, leukemia-bearing mice. Transplantation 1991; 52: 885–889.

    Article  CAS  PubMed  Google Scholar 

  6. Versa F, Tabilio A, Velardi A, Cunningham I . Treatment of high-risk acute leukemia with T-cell depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193.

    Article  Google Scholar 

  7. Sykes M, Preffer F, MaAfee S, Saidman SL . Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 1999; 353: 1755–1759.

    Article  CAS  PubMed  Google Scholar 

  8. Green A, Clarke E, Hunt L, Canterbury A . Children with acute lymphoblastic leukemia who receive T-cell-depleted HLA mismatched marrow allografts from unrelated donors have an increased incidence of primary graft failure but a similar overall transplant outcome. Blood 1999; 94: 2236–2246.

    CAS  PubMed  Google Scholar 

  9. Mattsson J, Uzunel M, Remberger M, Tammik L . Poor immune reconstitution after four or five major HLA antigen mismatched T cell-depleted allogeneic and autologous stem cell transplantation. Clin Exp Immunol 2001; 123: 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaschet J, Trevino MA, Cherel M, Vivien R . HLA-target antigens and T-cell receptor diversity of activated T cells invading the skin during acute graft-versus-host disease. Blood 1996; 87: 2345–2353.

    CAS  PubMed  Google Scholar 

  11. Keever-Taylor CA, Bredeson C, Loberiza FR, Casper JT . Analysis of risk factors for the development of GVHD after T cell-depleted allogeneic BMT: effect of HLA disparity, ABO incompatibility, and method of T-cell depletion. Biol Blood Marrow Transplant 2001; 7: 620–630.

    Article  CAS  PubMed  Google Scholar 

  12. Leung WH, Turner V, Richardson SL, Benaim E . Effect of HLA class I or class II incompatibility in pediatric marrow transplantation from unrelated and related donors. Hum Immunol 2001; 62: 399–407.

    Article  CAS  PubMed  Google Scholar 

  13. Bonnet D, Warren EH, Greenberg PD, Dick JE . CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc Natl Acad Sci USA 1998; 96: 8639–8644.

    Article  Google Scholar 

  14. Gao L, Bellantuono I, Elsasser A, Marley SB et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    CAS  PubMed  Google Scholar 

  15. Molldrem JJ, Lee PP, Wang C, Felio K . Evidence that specific T lymphocyte may participate in the elimination of chronic myelogenous leukemia. Nature Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  16. Norbury LC, Clark RE, Christmas SE . b3a2 BCR-ABL fusion peptides are targets for cytotoxic T cells in chronic myeloid leukemia. Br J Haematol 2000; 109: 616–621.

    Article  CAS  PubMed  Google Scholar 

  17. Spiro RC, DeMartino JL, Boto W, Lazarus H . Comparison of membrane proteins of Burkitt's lymphoma and EBV-transformed B lymphoblast cell lines and Con A-activated T lymphocytes and T lymphoblast cell lines. Leuk Res 1979; 3: 315–327.

    Article  CAS  PubMed  Google Scholar 

  18. Melenhorst JJ, Sorbara L, Kirby M, Hensel NF . Large granular lymphocyte leukemia is characterized by CD8+ lymphocyte populations. Br J Haematol 2000; 112: 189–194.

    Article  Google Scholar 

  19. Molldrem JJ, Clave E, Jiang YZ, Mavroudis D . Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 1997; 90: 2529–2534.

    CAS  PubMed  Google Scholar 

  20. Hensel N, Agarwala V, Jiang YZ, Mavroudis D . A technique for dual determination of cytotoxic and helper lymphocyte precursor frequency by a miniaturized dye release method. Bone Marrow Transplant 1999; 23: 71–78.

    Article  CAS  PubMed  Google Scholar 

  21. Wang XM, Terasaki PI, Rankin GWJ, China D . A new microcellular cytotoxicity test based on Calcein AM release. Hum Immunol 1993; 37: 264–270.

    Article  CAS  PubMed  Google Scholar 

  22. Chen RL, Reynolds CP, Seeger RC . Neutrophils are cytotoxic and growth-inhibiting for neuroblastoma cells with an anti-GD2 antibody but, without cytotoxicity, can be growth-stimulating. Cancer Immunol Immunother 2000; 48: 603–612.

    Article  CAS  PubMed  Google Scholar 

  23. Sheehy ME, McDermott AB, Furlan SN, Klenerman P . A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 2001; 249: 99–110.

    Article  CAS  PubMed  Google Scholar 

  24. Currier JR, Deulofeut H, Barron KS, Kehn PJ . Mitogens, superantigens, and nominal antigens elicit distinctive patterns of TCRB CDR3 diversity. Hum Immunol 1996; 48: 39–51.

    Article  CAS  PubMed  Google Scholar 

  25. Germain RN . MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76: 287–299.

    Article  CAS  PubMed  Google Scholar 

  26. Young NT, Roelen DL, Wood K, Welsh KI . Primary alloreactive cytotoxic T-lymphocytes are not commonly restricted by self-HLA class I antigens. Hum Immunol 1996; 50: 38–46.

    Article  CAS  PubMed  Google Scholar 

  27. Sadovnikova E, Stauss HJ . Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc Natl Acad Sci USA 1996; 93: 13114–13118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ . Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 1998; 28: 193–200.

    Article  CAS  PubMed  Google Scholar 

  29. Mutis T, Schrama E, van Luxemburg-Heijs SAP, Falkenburg JHF . HLA class II restricted T-cell reactivity to a developmentally regulated antigen shared by leukemic cells and CD34+ early progenitor cells. Blood 1997; 90: 1083–1090.

    CAS  PubMed  Google Scholar 

  30. Mutis T, Verdijk R, Schrama E, Esdendam B . Feasibility of immunotherapy of relapsed leukemia with ex vivo -generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999; 93: 2336–2341.

    CAS  PubMed  Google Scholar 

  31. Mutis T, Blokland E, Kester M, Schrama E . Generation of minor histocompatibility antigen HA-1-specific cytotoxic T cells restricted by nonself HLA molecules: a potential strategy to treat relapsed leukemia after HLA-mismatched stem cell transplantation. Blood 2002; 100: 547–552.

    Article  CAS  PubMed  Google Scholar 

  32. Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S, Vitetta E . Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 2002; 360: 130–137.

    Article  PubMed  Google Scholar 

  33. Montagna D, Yvon E, Calcaterra V, Comoli P . Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 1999; 93: 3550–3557.

    CAS  PubMed  Google Scholar 

  34. Mavroudis DA, Dermime S, Molldrem J, Jiang YZ . Specific depletion of alloreactive T cells in HLA- identical siblings: a method for separating graft-versus-host and graft-versus-leukemia reactions. Br J Haematol 1998; 101: 565–570.

    Article  CAS  PubMed  Google Scholar 

  35. Falkenburg JH, Wafelman AR, Joosten P, Smit WM . Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201–1208.

    CAS  PubMed  Google Scholar 

  36. Lowdell MW, Lamb L, Hoyle C, Velardi A . Non-MHC-restricted cytotoxic cells: their roles in the control and treatment of leukemias. Br J Haematol 2001; 114: 11–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, H., Sconocchia, G., Melenhorst, J. et al. Tissue-restricted T cell alloresponses across HLA barriers: selection and identification of leukemia-restricted CTL in HLA-mismatched stimulator–responder pairs. Bone Marrow Transplant 32, 371–378 (2003). https://doi.org/10.1038/sj.bmt.1704142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704142

Keywords

This article is cited by

Search

Quick links