Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of DNA Base Sequence Differences among Vertebrates

Abstract

UNLIKE the wide variation of DNA base composition found in bacteria, higher organisms tend to have a restricted average base composition, (vertebrates 42 moles per cent guanine + cytosine)1. Thus physical methods such as thermal denaturation or equilibrium density gradient sedimentation, which are useful in distinguishing bacterial DNAs2, do not discriminate to any extent among vertebrate DNAs, excluding the question of satellite bands. Phylogenetic relationships among bacteria, based on other criteria, are largely borne out by DNA–DNA hybridization3. While the latter technique can discriminate among distantly related higher organisms4 it can be applied with only limited confidence to more closely related vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sueoka, N., in Evolution of Macromolecules (edit. by Bryson, V., and Vogel, H. J.), 479 (Academic Press, 1965).

    Google Scholar 

  2. Sueoka, N., J. Mol. Biol., 3, 31 (1961).

    Article  CAS  Google Scholar 

  3. Marmur, J., Falkow, S., and Mandel, M., Ann. Rev. Microbiol., 17, 329 (1963).

    Article  CAS  Google Scholar 

  4. Hoyer, B. H., McCarthy, B. J., and Bolton, E. T., Science, 144, 959 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Kidson, C., and Kirby, K. S., Biochim. Biophys. Acta, 76, 624 (1963).

    Google Scholar 

  6. Goldstein, J., Bennett, J. P., and Craig, L. C., Proc. US Nat. Acad. Sci., 51, 119 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Kidson, C., and Kirby, K. S., Biochim. Biophys. Acta, 91, 627 (1964).

    CAS  PubMed  Google Scholar 

  8. Kidson, C., J. Mol. Biol., 17, 1 (1966).

    Article  CAS  Google Scholar 

  9. Kirby, K. S., Biochim. Biophys. Acta, 36, 117 (1959).

    Article  CAS  Google Scholar 

  10. Parish, J. H., and Kirby, K. S., Biochim. Biophys. Acta, 129, 554 (1966).

    Article  CAS  Google Scholar 

  11. Kirby, K. S., Biochim. Biophys. Acta, 55, 382 (1962).

    Article  CAS  Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  13. Kirby, K. S., in Prog. in Nucleic Acid Res., 3, 1 (1964).

    Article  MathSciNet  CAS  Google Scholar 

  14. Kirby, K. S., Biochem. J., 96, 266 (1965).

    Article  CAS  Google Scholar 

  15. Roger, M., Proc. US Nat. Acad. Sci., 51, 189 (1964).

    Article  ADS  CAS  Google Scholar 

  16. Hershey, A. D., Burgi, E., and Ingraham, L., Biophys. J., 92, 206 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BALDWIN, J., KIDSON, C. Recognition of DNA Base Sequence Differences among Vertebrates. Nature 217, 1256–1257 (1968). https://doi.org/10.1038/2171256a0

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1038/2171256a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing