Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Forces involved in the Conformational Stability of Nucleic Acids

Abstract

ONE of the most important problems in research on nucleic acid is the understanding of the forces which maintain the helical structure. After the elucidation of the double helix by Watson and Crick1, the helical secondary structure of DNA was thought to derive its stability from hydrogen bonding between the base pair. The discovery that polynucleotides could exist in single strand ordered helical conformation2–6 demonstrated that other types of forces are involved in the stability of this structure. These stacking forces between parallel bases were thought to be of the Van der Waals type. More recent work shows that the presence, absence or modification of the 2′ hydroxyl group plays an important part in the conformational stability of the oligo and poly-nucleotides7–12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watson, J. D., and Crick, F. H. C., Nature, 171, 737 (1953).

    Article  ADS  CAS  Google Scholar 

  2. Brahms, J., J. Amer. Chem. Soc., 85, 3298 (1963).

    Article  CAS  Google Scholar 

  3. Fasman, G. D., Lindblow, C., and Grossmann, L., Biochemistry, 3, 1015 (1964).

    Article  CAS  Google Scholar 

  4. Luzzati, V., Mathis, A., Masson, F., and Witz, J., J. Mol. Biol., 10, 28 (1964).

    Article  CAS  Google Scholar 

  5. Holcomb, D. N., and, Tinoco, jun., I., Biopolymers, 3, 121 (1965).

    Article  CAS  Google Scholar 

  6. Van Holde, K. E., Brahms, J., and Michelson, A. M., J. Mol. Biol., 12, 726 (1965).

    Article  CAS  Google Scholar 

  7. Brahms, J., Maurizot, J. C., and Michelson, A. M., J. Mol. Biol., 25, 481 (1967).

    Article  CAS  Google Scholar 

  8. Adler, A., Grossmann, L., and Fasman, G. D., Proc. US Nat. Acad. Sci., 57, 423 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Vournakis, J., Poland, D., and Scheraga, H. A., Biopolymers, 5, 403 (1967).

    Article  CAS  Google Scholar 

  10. Ts'O, P. O. P., Rapaport, S. A., and Bollum, F. J., Biochemistry, 5, 4153 (1966).

    Article  CAS  Google Scholar 

  11. Maurizot, J. C., Wechter, W. J., Brahms, J., and Sadron, Ch., Nature, 219, 377 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Adler, A. J., Grossmann, L., and Fasman, G. D., Biochemistry, 7, 3836 (1968).

    Article  CAS  Google Scholar 

  13. Brahms, J., Michelson, A. M., and Van Holde, K. E., J. Mol. Biol., 15, 467 (1966).

    Article  CAS  Google Scholar 

  14. Poland, D., Vournakis, J. N., and Scheraga, H. A., Biopolymers, 4, 223 (1966).

    Article  CAS  Google Scholar 

  15. Davis, R. C., and Tinoco, jun., I., Biopolymers, 6, 223 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MAURIZOT, J., BRAHMS, J. & ECKSTEIN, F. Forces involved in the Conformational Stability of Nucleic Acids. Nature 222, 559–561 (1969). https://doi.org/10.1038/222559a0

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1038/222559a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing