Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Vitamin K2 induces apoptosis of a novel cell line established from a patient with myelodysplastic syndrome in blastic transformation

Abstract

We have previously reported that vitamin K2 (VK2) has a potent apoptosis inducing activity toward various types of primary cultured leukemia cells including acute myelogenous leukemia arising from myelodysplastic syndromes (MDS). We established a novel cell line, designated MDS-KZ, from a patient with MDS in blastic transformation, and further investigated the effects of VK2 using this novel cell line. MDS-KZ shows complex chromosomal anomaly including −4, 5q−, −7, 13q+, 20q−, consistent with that seen in the original patient. Culture of MDS-KZ cells in RPMI1640 medium containing 10% FBS lead to steady but very slow proliferation with a doubling time of 14 days. However, the cellular growth rate was significantly accelerated in the presence of various growth factors such as granulocyte colony-stimulating factor, stem cell factor, granulocyte–macrophage colony-stimulating factor, interleukin-3, and thrombopoietin. Most of the cultured cells show the morphological features of myeloblasts. They are positive for CD7, CD33, CD34, CD45, CD117, and HLA-DR. However, about 10% of the cells are more mature metamyelocytes and neutrophils with various dysplastic characteristics such as pseudo-Pelger nuclear anomaly and hypersegmentation, suggesting a potential for differentiation in this cell line. As previously reported for cultured primary leukemia cells, exposure to VK2, but not to VK1, resulted in induction of apoptosis of MDS-KZ cells in a dose-dependent manner (IC50: 5 μM). In addition, VK2 treatment induced down-regulation of BCL-2 and up-regulation of BAX protein expression with concomitant activation of caspase-3 (CPP32). A tetrapeptide functioning as antagonist of caspase-3, Ac-DEVD-H, suppressed the VK2-induced inhibition of cell growth, suggesting that caspase-3 is, at least in part, involved in VK2-induced apoptosis. These observations suggest that the MDS-KZ cell line can serve as a model for the study of the molecular mechanisms of VK2-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimaki, J., Miyazawa, K., Yaguchi, M. et al. Vitamin K2 induces apoptosis of a novel cell line established from a patient with myelodysplastic syndrome in blastic transformation. Leukemia 13, 1399–1405 (1999). https://doi.org/10.1038/sj.leu.2401491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.leu.2401491

Keywords

This article is cited by

Search

Quick links