Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Normal Hemopoiesis and Stemcellology

All-trans-retinoic acid effects the growth, differentiation and apoptosis of normal human myeloid progenitors derived from purified CD34+ bone marrow cells

Abstract

We have previously shown that all-trans retinoic acid (ATRA) increases the number of CFU-GM colonies grown from unseparated human bone marrow cells with crude sources of colony stimulating factors. In this study, we further characterized the effect of ATRA on the growth of CFU-GM stimulated by individual cytokines from multiple samples of CD34+enriched or purified human bone marrow cells. The number of IL-3- or GM-CSF-induced CFU-GM with 3 × 10−7M ATRA was 3.25 ± 1.13, and 2.17 ± 0.8-fold greater respectively, compared to controls without ATRA, while G-CSF had no effect and the ratio of colony-induced with or without ATRA was 1.06 ± 0.17 (P = 0.00012). No colonies grew with ATRA + IL-6 or ATRA without a cytokine. Maximum enhancing effect on IL-3-induced CFU-GM occurred when ATRA was added on day 2, gradually diminished when delaying ATRA, and in cultures of day 9 or older adding ATRA had no effect. In 14 days liquid cultures of purified CD34+ cells with IL-3, ATRA increased the number of myeloid differentiated cells to 91–95%, compared to 37–70% with IL-3 alone. In addition, the number of apoptotic cells using the annexin V method increased after 14 days from 5.1% with IL-3 to 17.1% with IL-3 + ATRA and by the TUNEL in situ method from 10–26% to 60–95%, respectively. This study demonstrates that ATRA consistently enhances the growth of myeloid progenitors from CD34+ cells. This effect is dependent on the stimulating cytokine, suggesting the myeloid cells responding to ATRA are the less mature CFU-GMs that are targets of IL-3 and GM-CSF and not the G-CSF-responding mature progenitors. The growth stimulation by ATRA and IL-3 is also associated with granulocyte differentiation and increased apoptosis. These studies further suggest a potential role of pharmacological doses of ATRA on the development of normal human hematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hoffman C, Eichele G . Retinoids in development. In: Sporn MB, Roberts AB, Goodman DS (eds) The Retinoids: Biology, Chemistry and Medicine, 2nd edn Raven Press: New York 1994 387–442

    Google Scholar 

  2. Smith MA, Parkinson DR, Cheson B, Friedman MA . Retinoids in cancer therapy J Clin Oncol 1992 10: 839–864

    Article  CAS  PubMed  Google Scholar 

  3. Means AL, Gudas LJ . The role of retinoids in vertebrate development Annu Rev Biochem 1995 64: 201–233

    Article  CAS  PubMed  Google Scholar 

  4. Goodman DW . Vitamin A and retinoids in health and disease New Engl J Med 1984 310: 1023–1034

    Article  CAS  PubMed  Google Scholar 

  5. Breitman TR, Selonik SE, Collins SJ . Induction of differentiation of human progranulocytic leukemia cell line (HL-60) by retinoic acid Proc Natl Acad Sci USA 1980 77: 2936–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai S, Collins SJ . A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocytic stage Proc Natl Acad Sci USA 1993 90: 7153–7157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de The H, Marchio A, Tiollais P, Dejean A . Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes EMBO J 1989 8: 429–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Largman C, Detmer K, Corral JC, Hack FM, Lawrence HJ . Expression of retinoic acid receptor alpha mRNA in human leukemia cells Blood 1989 74: 99–102

    CAS  PubMed  Google Scholar 

  9. Breitman TR, Collins SJ, Keene BR . Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid Blood 1981 57: 1000–1004

    CAS  PubMed  Google Scholar 

  10. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne, Degos L . All trans retinoic acid in acute promyelocytic leukemia. II. In vitro studies: structure–function relationship Blood 1990 76: 1710–1717

    CAS  PubMed  Google Scholar 

  11. Warrel RP Jr, de The H, Want Z-Y, Degos L . Acute promyelocytic leukemia New Engl J Med 1993 329: 177–189

    Article  Google Scholar 

  12. Elliott S, Taylor K, White S, Rodwell R, Marlton P, Meagher D, Wiley J, Taylor D, Wright S, Timms P . Proof of differentiative mode of action of all-trans retinoic acid in acute promyelocytic leukemia using X-linked clonal analysis Blood 1992 79: 1916–1919

    CAS  PubMed  Google Scholar 

  13. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Fausner JH, Ogden A, Sheperd L, Bloomfiled CJ, Head DR, Weinstein HJ, Woods WG, Rowe JM, Weirnick PA . A prospective randomized trial of all-trans-retinoic acid in induction and maintenance therapy for patients with acute promyelocytic leukemia New Engl J Med 1997 337: 1021–1028

    Article  CAS  PubMed  Google Scholar 

  14. Fenaux P, Le Delay MC, Castaigne S, Archibaud E, Chemoienne C, Link H, Guerci A, Duarte M, Daniel MT, Bowen D, Huebner G, Bauters F, Fegueux DN, Fey M, Sanz B, Lowenberg B, Maloisel F, Auzanneau G, Sadoum A, Gardia C, Bastion Y, Gasner A, Jacky E, Dombert H, Chastang C, Degos L, and the European APL 91 Group . Effect of all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial Blood 1993 82: 3241–3249

    CAS  PubMed  Google Scholar 

  15. de The H, Chomienne H, Lannotte M, Degos L, Dejean A . The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus Nature 1990 347: 358–361

    Article  Google Scholar 

  16. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM . Chromosomal translocation t(15;17) of human acute promyelocytic leukemia fuses RAR alpha gene with a novel putative transcription factor, PML Cell 1991 66: 663–674

    Article  CAS  PubMed  Google Scholar 

  17. Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, Lo Coco F, Grignani F, Pelicci PG . Structure and origin of the acute promyelocytic leukemia myl/RAR-α cDNA and characterization of its retinoid-binding and transactivation properties Oncogene 1991 6: 1285–1292

    CAS  PubMed  Google Scholar 

  18. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi A, LoCoco F, Grignani F, Pelicci PG . Acute promyelocytic leukemia: from genetics to treatment Blood 1994 83: 10–25

    CAS  PubMed  Google Scholar 

  19. Grignani FR, Ferruci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG . The acute promyelocytic leukemia specific PML/RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells Cell 1993 74: 423–431

    Article  CAS  PubMed  Google Scholar 

  20. Mernick A, Licht JD . Deconstructing a disease: RARα, its fusion partners and their roles in the pathogenesis of acute promyelocytic leukemia Blood 1999 93: 3167–3215

    Google Scholar 

  21. Dermine S, Grignani F, Clerici M, Nervi C, Sozi G, Talamo GP, Marchesi E, Formelli F, Parmiani G, Pelicci PG, Gambacorti-Passerini C . Occurrence of resistance to retinoic acid in the acute promyelocytic leukemia cell line NB4 is associated with altered expression of the PML/RARα protein Blood 1993 82: 1573–1577

    Google Scholar 

  22. Degos L, Dombret H, Chomienne C, Daniel MT, Miclea JM, Chastang C, Castaigne S, Fenaux P . All-trans retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia Blood 1995 85: 2643–2653

    CAS  PubMed  Google Scholar 

  23. Douer D, Koeffler HP . Retinoic acid enhances colony stimulating factor-induced clonal growth of normal human myeloid progenitor cells in vitro Exp Cell Res 1982 138: 193–198

    Article  CAS  PubMed  Google Scholar 

  24. Nagler A, Riklis I, Kletter Y, Tatarsky I, Fabian I . Effect of 1, 2-dihydroxy vitamin D3 and retinoic acid on normal human pluripotent (CFU-mix) erythroid (BFU-E) and myeloid (CFU-C) progenitor cell growth and differentiation patterns Exp Hematol 1986 14: 60–65

    CAS  PubMed  Google Scholar 

  25. Aglietta M, Piacibello W, Stacchini A, Sanavio F, Gavosto F . In vitro effect of retinoic acid on normal and chronic myeloid leukemia granulopoiesis Leukemia Res 1985 9: 879–885

    Article  CAS  Google Scholar 

  26. Gratas C, Menot ML, Dresch C, Chomienne C . Retinoic acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells Leukemia 1993 7: 1156–1162

    CAS  PubMed  Google Scholar 

  27. Tobler A, Dawson MI, Koeffler HP . Retinoids: structure–function relationship in normal and leukemic hematopoiesis in vitro J Clin Invest 1986 78: 303–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Labbaye C, Voltier M, Testa U Gaimpaolo A, Meccia E, Sterpetti P, Parolini I, Pelosi E, Bulgarini D, Cayre YE, Peschle C . Retinoic acid down modulates erythroid differentiation and GATA-1 expression in purified adult progenitor cultures Blood 1994 83: 651–656

    CAS  PubMed  Google Scholar 

  29. Zauli G, Visani G, Vitale M, Gibellini D, Bertolaso L, Capitani S . All-trans retinoic acid shows multiple effects on the survival proliferation and differentiation on human fetal CD34+ hematopoietic progenitor cells Br J Haematol 1995 90: 274–282

    Article  CAS  PubMed  Google Scholar 

  30. Tocci A, Parolini I, Gabbianelli M, Testa U, Luchetti L, Samoggia P, Masella B, Russo G, Valtieri M, Peschle C . Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program Blood 1996 88: 2878–2888

    CAS  PubMed  Google Scholar 

  31. van Bockstaele DR, Lenjou M, Snoeck HW, Lardon F, Stryckmans P, Peetermans ME . Direct effects of 13-cis and all-trans retinoic acid on normal bone marrow (BM) progenitors: comparative study on BM mononuclear cells and on isolated CD34+ BM cells Ann Hematol 1993 66: 61–66

    Article  CAS  PubMed  Google Scholar 

  32. Ormerod MG, Collins MKL, Rodriguez-Tarduchy G, Robertson D . Apoptosis in interleukin-3-dependent hematopoietic cells. Quantification by two flow cytometric methods J Immunol Meth 1992 153: 57–67

    Article  CAS  Google Scholar 

  33. Sach L . The control of hematopoiesis and leukemia from basic biology to the clinic Proc Natl Acad Sci USA 1996 93: 4742–4751

    Article  Google Scholar 

  34. Koopman G, Reutelingsperger CPM, Kuitjen GAM, Keehnen RMJ, Pals ST, van Oers MHJ . Annexin V for flow cytometric detection of phosphatidylserine expression of B cells undergoing apoptosis Blood 1994 84: 1415–1422

    CAS  PubMed  Google Scholar 

  35. Gorczyca W, Gong J, Darzynkiewiczj A . Detection of DNA stand breaks in individual apoptotic cells by the in situ terminal deoxynucleatidyl transferase and nick translation assay Cancer Res 1993 53: 1945–1953

    CAS  PubMed  Google Scholar 

  36. Tohda S, Minden MD, McCullock EA . Interaction between retinoic acid and colony stimulation factor affecting the blast cells of acute myeloblastic leukemia Leukemia 1991 5: 951–957

    CAS  PubMed  Google Scholar 

  37. Smeland EB, Rusten L, Jacobsen SEW, Skrede B, Blomhoff R, Wang MY, Funderud S, Kvalheim G, Blomhoff HK . All-trans retinoic acid directly inhibits granulocyte colony-stimulating factor-induced proliferation of CD34+ human hematopoietic progenitor cells Blood 1994 84: 2940–2945

    CAS  PubMed  Google Scholar 

  38. Emerson SG, Yang YC, Clark SC, Long MW . Human recombinant granulocyte–macrophage colony stimulating factor and interleukin 3 have overlapping but distinct hematopoietic activities J Clin Invest 1988 82: 1282–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Caux C, Saeland S, Favre C, Duvert V, Mannoni P, Banchereau J . Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte–macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells Blood 1990 75: 2292–2298

    CAS  PubMed  Google Scholar 

  40. Josefsen D, Blomhoff HK, Lomo J, Blystad AK, Smeland EB . Retinoic acid induces apoptosis of human CD34(+) hematopoietic progenitors: involvement of retinoic acid receptors and retinoid X receptors depends on lineage commitment of the hematopoietic progenitor cells Exp Hematol 1999 27: 642–653

    Article  CAS  PubMed  Google Scholar 

  41. Ninomiya Y, Adams R, Morris-Kay GM, Eto K . Apoptotic cell death in neuronal differentiation of P19 EC cells: cell death follows reentry into S phase J Cell Physiol 1997 175: 25–35

    Article  Google Scholar 

  42. Evans G, Harrington E, Fanidi A, Land H, Amati B, Bennett M . Integrated control of cell proliferation and cell death by the c-myc oncogene Phil Trans Royal Soc Long B Biol Sci 1994 345: 269–275

    Article  Google Scholar 

  43. Lotem J, Sachs L . Coupling of growth and differentiation in normal myeloid precursors and the breakdown of this coupling in leukemia Int J Cancer 1983 32: 127–134

    Article  CAS  PubMed  Google Scholar 

  44. Metcalf D . The molecular control of cell division, differentiation commitment and maturation in hematopoietic cells Nature 1989 339: 27–35

    Article  CAS  PubMed  Google Scholar 

  45. Lee EY, Hu N, Yuan SS, Cox LA, Bradley A, Lee WH, Herrup K . Dual role of the retinoblastoma protein in cell cycle regulation and neuron differentiation Gene Dev 1994 8: 2008–2021

    Article  CAS  PubMed  Google Scholar 

  46. Okazawa H, Shimizu J, Imafuku I, Hamada H . Bcl-2 inhibits retinoic acid-induced apoptosis during the neural differentiation of embryonal stem cells J Cell Biol 1996 132: 955–968

    Article  CAS  PubMed  Google Scholar 

  47. Martin SJ, Bradley JG, Cotter TG . HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis Clin Exp Immunol 1990 79: 448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Park JR, Robertson K, Hickstein DD, Tsai S, Hockenbery DM, Collins SJ . Dysregulated bcl-2 expression inhibits apoptosis but not differentiation of retinoic acid-induced HL-60 granulocytes Blood 1994 84: 440–445

    CAS  PubMed  Google Scholar 

  49. Lee JS, Newman RA, Lippman SM, Hubner MH, Minor T, Raber MN, Krakoff IH, Hong WK . Phase I evaluation of all-trans retinoic acid in adults with solid tumors J Clin Oncol 1993 11: 959–966

    Article  CAS  PubMed  Google Scholar 

  50. Kahn MC, Luginbuhl W, Gaines L, Bratschi J . Leukocytosis associated with all-trans-retinoic acid therapy in metastatic non-small-cell lung cancer J Natl Cancer Inst 1992 84: 1669–1670

    Article  CAS  PubMed  Google Scholar 

  51. Frankel SR, Earldley A, Lauwers G, Weiss M, Warrel R . The ‘retinoic acid syndrome’ in acute promyelocytic leukemia Ann Intern Med 1992 117: 292–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in large part by the USC/Norris Comprehensive Cancer Center NCI Core Grant 5P30CA14089. The authors thank Gus Miranda and Brandy Chong for their excellent secretarial support in preparing this manuscript and Mark Heckinger for his assistance with the flow cytometry assays.

Author information

Authors and Affiliations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douer, D., Ramezani, L., Parker, J. et al. All-trans-retinoic acid effects the growth, differentiation and apoptosis of normal human myeloid progenitors derived from purified CD34+ bone marrow cells. Leukemia 14, 874–881 (2000). https://doi.org/10.1038/sj.leu.2401772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.leu.2401772

Keywords

This article is cited by

Search

Quick links