Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CLL

Farnesyltransferase inhibitor BMS-214662 induces apoptosis in B-cell chronic lymphocytic leukemia cells

Abstract

B-cell chronic lymphocytic leukemia (B-CLL) cells develop resistance to nucleoside analogs over time. This chemoresistance may be caused by selection for B-CLL cells with defects in the particular apoptosis pathway triggered by these drugs. Therefore, anticancer agents that induce apoptosis through alternative pathways might be useful in treating chemoresistant B-CLL. Farnesyltransferase inhibitors (FTIs) are a class of synthetic drugs with definite molecular targets, which have demonstrated cytotoxicity against leukemic cell lines. We have studied the ex vivo effect of the FTI BMS-214662 on cells from 18 patients with B-CLL. Low concentrations (<1 μ M) of BMS-214662 prevented farnesylation of the chaperone marker HDJ-2 and had no effect on Akt activation. BMS-214662 induced apoptosis in B-CLL cells from all patients studied, including those showing resistance to cladribine and fludarabine ex vivo and in vivo. Treatment with BMS-214662 induced loss of mitochondrial membrane potential (ΔΨm), phosphatidylserine exposure, proapoptotic conformational changes of Bax and Bak, reduction in Mcl-1 levels and activation of caspases 9 and 3. The general caspase inhibitor Z-VAD-fmk did not prevent BMS-214662-induced cell death. These results indicate that BMS-214662 may be a useful drug for treating B-CLL and, in particular, an alternative for the therapy of purine analog-resistant or relapsed B-CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Diehl LF, Karnell LH, Menck HR . The National Cancer Data Base report on age, gender, treatment, and outcomes of patients with Chronic Lymphocytic Leukemia. Cancer 1999; 86: 2684–2692.

    Article  CAS  PubMed  Google Scholar 

  2. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  3. Rai KR, Dohner H, Keating MJ, Montserrat E . Chronic lymphocytic leukemia: case-based session. Hematology (Am Soc Hematol Educ Program) 2001, 140–156.

  4. Kipps TJ . Chronic lymphocytic leukemia. Curr Opin Hematol 2000; 7: 223–234.

    Article  CAS  PubMed  Google Scholar 

  5. Robak T, Blonski JZ, Kaasznicki M, Blasinska-Morawiec M, Krykowski E, Dmoszyniska A et al. Cladribine with prednisone vs chlorambucil with prednisone as first-line therapy in chronic lymphocytic leukemia: report of a prospective, randomized, multicenter trial. Blood 2000; 96: 2723–2729.

    CAS  PubMed  Google Scholar 

  6. Kimby E, Brandt L, Nygren P, Glimelius B . A systematic overview of chemotherapy effects in B-cell chronic lymphocytic leukaemia. Acta Oncol 2001; 40: 224–230.

    Article  CAS  PubMed  Google Scholar 

  7. Perez-Galan P, Marzo I, Giraldo P, Rubio-Felix D, Lasierra P, Larrad L et al. Role of caspases and apoptosis-inducing factor (AIF) in cladribine-induced apoptosis of B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 2106–2114.

    Article  CAS  PubMed  Google Scholar 

  8. Singh SB, Lingham RB . Current progress on farnesyl protein transferase inhibitors. Curr Opin Drug Discov Dev 2002; 5: 225–244.

    CAS  Google Scholar 

  9. Caponigro F, Casale M, Bryce J . Farnesyl transferase inhibitors in clinical development. Expert Opin Investig Drugs 2003; 12: 943–954.

    Article  CAS  PubMed  Google Scholar 

  10. Sebti SM, Hamilton AD . Design of growth factor antagonists with antiangiogenic and antitumor properties. Oncogene 2000; 19: 6566–6573.

    Article  CAS  PubMed  Google Scholar 

  11. Nedergaard T, Guldberg P, Ralfkiaer E, Zeuthen J . A one-step DGGE scanning method for detection of mutations in the K-, N-, and H-ras oncogenes: mutations at codons 12, 13 and 61 are rare in B-cell non-Hodgkin's lymphoma. Int J Cancer 1997; 71: 364–369.

    Article  CAS  PubMed  Google Scholar 

  12. Browett PJ, Ganeshaguru K, Hoffbrand AV, Norton JD . Absence of Kirsten-ras oncogene activation in B-cell chronic lymphocytic leukemia. Leuk Res 1988; 12: 25–31.

    Article  CAS  PubMed  Google Scholar 

  13. Neri A, Knowles DM, Greco A, McCormick F, Dalla-Favera R . Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci USA 1988; 85: 9268–9272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barragan M, Bellosillo B, Campas C, Colomer D, Pons G, Gil J . Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 2002; 99: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  15. Sebti SM, Der CJ . Searching for the elusive targets of farnesyltransferase inhibitors. Nat Rev Cancer 2003; 3: 945–951.

    Article  CAS  PubMed  Google Scholar 

  16. Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A et al. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 2003; 101: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  17. Chun KH, Lee HY, Hassan K, Khuri F, Hong WK, Lotan R . Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res 2003; 63: 4796–4800.

    CAS  PubMed  Google Scholar 

  18. Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20: 139–148.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 1999; 144: 903–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D . Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem 2002; 277: 44317–44326.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi H, Paranawithana SR, Lee MW, Huang Z, Bhalla KN, Wang H-G . Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res 2002; 62: 466–471.

    CAS  PubMed  Google Scholar 

  22. Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM . Caspase activation inhibits proteasome function during apoptosis. Mol Cell 2004; 14: 81–93.

    Article  CAS  PubMed  Google Scholar 

  23. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T . The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000; 275: 26661–26664.

    CAS  PubMed  Google Scholar 

  24. Suzuki Y, Nakabayashi Y, Takahashi R . Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001; 98: 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirsch DG, Doseff A, Chau BN, Lim D-S, Souza-Pinto NC, Hansford R et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome C. J Biol Chem 1999; 274: 21155–21161.

    Article  CAS  PubMed  Google Scholar 

  26. Rose WC, Lee FY, Fairchild CR, Lynch M, Monticello T, Kramer RA et al. Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res 2001; 61: 7507–7517.

    CAS  PubMed  Google Scholar 

  27. Johnston SR . BMS-214662 (Bristol–Myers Squibb). Drugs 2003; 6: 72–78.

    CAS  Google Scholar 

  28. Vanags DM, Pörn-Ares MI, Coppola S, Burgess DH, Orrenius S . Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996; 271: 31075–31085.

    Article  CAS  PubMed  Google Scholar 

  29. Pettitt AR, Cawley JC . Caspases influence the mode but not the extent of cell death induced by purine analogues in chronic lymphocytic leukaemia. Br J Haematol 2000; 109: 800–804.

    Article  CAS  PubMed  Google Scholar 

  30. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 2003; 17: 1475–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iglesias-Serret D, Pique M, Gil J, Pons G, Lopez JM . Transcriptional and translational control of Mcl-1 during apoptosis. Arch Biochem Biophys 2003; 417: 141–152.

    Article  CAS  PubMed  Google Scholar 

  32. Chen Q, Gong B, Almasan A . Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 2000; 7: 227–233.

    Article  CAS  PubMed  Google Scholar 

  33. Shi Y, Gera J, Hsu JH, Van Ness B, Lichtenstein A . Cytoreductive effects of farnesyl transferase inhibitors on multiple myeloma tumor cells. Mol Cancer Ther 2003; 2: 563–572.

    CAS  PubMed  Google Scholar 

  34. Ringshausen I, Schneller F, Bogner C, Hipp S, Duyster J, Peschel C et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood 2002; 100: 3741–3748.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Veeraswamy Manne (Bristol-Myers Squibb) for providing us with BMS-214662. This work was supported in part by grants PIO20065 and G03/136 Thematic Network from Fondo de Investigaciones Sanitarias (Ministerio de Sanidad, Spain) and P24/2000 from Diputación General de Aragón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Marzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzo, I., Pérez-Galán, P., Giraldo, P. et al. Farnesyltransferase inhibitor BMS-214662 induces apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18, 1599–1604 (2004). https://doi.org/10.1038/sj.leu.2403469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.leu.2403469

Keywords

This article is cited by

Search

Quick links