Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphological evidence for an experimentally induced synaptic field

Abstract

WHEN fibres in the central nervous system (CNS) of invertebrates and lower vertebrates are interrupted, regenerating axons grow beyond the lesion and form new synapses on denervated neurones. In the leech CNS, however, we have seen synapses formed by the regenerating fibres at the site of the lesion. The formation of synapses in regions where they are normally absent raises important questions about the manner in which axons grow to their targets and form orderly connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sánchez, D., Trab. Lab. invest. biol. Univ. Madrid, 7, 31–187 (1908).

    Google Scholar 

  2. Ito, T., Folia. anat. Jap., 14, 389–412 (1936).

    Google Scholar 

  3. Gray, E. G., and Guillery, R. W., Z. Zellforsch., 60, 826–849 (1963).

    Article  CAS  Google Scholar 

  4. Coggeshall, R. E., and Fawcett, D. W., J. Neurophysiol., 27, 229–289 (1964).

    Article  CAS  Google Scholar 

  5. Retzius, G., Biologische untersuchungen, Neue Folge II (Sampson and Wallin, Stockholm, 1891).

    Google Scholar 

  6. Baylor, D. A., and Nicholls, J. G., J. Physiol., 203, 591–609 (1969).

    Article  CAS  Google Scholar 

  7. Hoffman, H., in Regeneration in the central nervous system (edit. by Windle, W. F.), 112–126 (Thomas, Springfield, Illinois, 1955).

    Google Scholar 

  8. Guth, L., Exp. Neurol., 6, 129–141 (1962).

    Article  CAS  Google Scholar 

  9. Williams, T. H., and Jew, J., Nature, 232, 268–269 (1971).

    Article  Google Scholar 

  10. Björklund, A., Katzman, R., Stenevi, U., and West, K. A., Brain Res., 31, 21–33 (1971).

    Article  Google Scholar 

  11. Stenevi, U., Björklund, A., and Moore, R. Y., Exp. Neurol., 35, 290–299 (1972).

    Article  CAS  Google Scholar 

  12. Bernstein, M. E., and Bernstein, J. J., Intern. J. Neurosci., 5, 15–26 (1973).

    Article  CAS  Google Scholar 

  13. Bernstein, J. J., and Bernstein, M. E., Exp. Neurol., 30, 336–351 (1971).

    Article  CAS  Google Scholar 

  14. Miledi, R., Nature, 199, 1191–1192 (1963).

    Article  ADS  CAS  Google Scholar 

  15. Baylor, D. A., and Nicholls, J. G., in Physiological and biochemical aspects of nervous integration (edit. by Carlson, F. D.), 3–16 (Prentice-Hall, Englewood Cliffs, 1968).

    Google Scholar 

  16. Baylor, D. A., and Nicholls, J. G., Nature, 232, 268–269 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Jansen, J. K. S., and Nicholls, J. G., Proc. natn. Acad. Sci. U.S.A., 69, 636–639 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FERNANDEZ, J., FERNANDEZ, M. Morphological evidence for an experimentally induced synaptic field. Nature 251, 428–430 (1974). https://doi.org/10.1038/251428a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/251428a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing