Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer

Abstract

EUKARYOTIC DNA is complexed with proteins which influence its conformation, stability and function1,2. Attempts to correlate the chemical and biological properties of chromatin have focused on the coverage of DNA by chromosomal proteins3–8. As much as 50% of the DNA in chromatin is accessible to precipitants (such as basic dyes or polylysine)3–6 or to limiting nucleolytic digestion3,4,6–8, suggesting a model of segmental DNA accessibility in chromatin resembling a frayed telephone wire. Digestion extensively alters chromatin structure, however, and the results of experiments involving precipitation or digestion may be influenced by processes associated with the aggregation phenomena serving as experimental endpoints. We have used an alternative approach to characterise DNA accessibility in chromatin using the transfer of electronic excitation energy between pairs of fluorescent dyes bound to chromatin at low ratios of dye to phosphate. The results suggest that at least one-third of the DNA in chromatin retains a high affinity for basic dyes. The exclusion of dyes or other molecules9 from portions of chromatin may, however, depend on the conformation of chromatin as well as on the protein–DNA stoichiometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simpson, R. T., Adv. Enzymol., 38, 41–108 (1973).

    CAS  PubMed  Google Scholar 

  2. Bonner, J., Dahmus, M. E., Fambrough, D., Huang, R. C. C., Marushige, K., and Tuan, D. Y. H., Science, 159, 47–56 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Clark, R. J., and Felsenfeld, G., Nature new Biol., 229. 101–106 (1971).

    Article  CAS  Google Scholar 

  4. Clark, R. J., and Felsenfeld, G., Nature new Biol., 240, 226–232 (1972).

    Article  CAS  Google Scholar 

  5. Itzhaki, R. M., Biochem. J., 122, 583–592 (1971).

    Article  CAS  Google Scholar 

  6. Simpson, R. J., and Polacow, F., Biochem. biophys. Res. Commun., 55, 1078–1084 (1973).

    Article  CAS  Google Scholar 

  7. Itzhaki, R. M., Biochem. J., 125, 221–224 (1971).

    Article  CAS  Google Scholar 

  8. Clark, R. J., and Felsenfeld, G., Biochemistry, 13, 3622–3628 (1974).

    Article  CAS  Google Scholar 

  9. Simpson, R. T., Proc. natn. Acad. Sci. U.S.A., 71, 2740–2743 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Forster, T., in Modern quantum chemistry, (edit. by Sinanoglu, O.), 93–137 (Academic, New York, 1965).

    Google Scholar 

  11. Stryer, L., Science, 162, 526–533 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Waring, J. J., J. molec. Biol., 13, 269–282 (1965).

    Article  CAS  Google Scholar 

  13. Le Pecq, J. P., and Paoletti, C., J. molec. Biol., 27, 87–106 (1967).

    Article  CAS  Google Scholar 

  14. Lerman, L., Proc. natn. Acad. Sci. U.S.A., 49, 94–102 (1963).

    Article  ADS  CAS  Google Scholar 

  15. Latt, S. A., Brodie, S., and Munroe, S. H., Chromosoma, 49, 17–40 (1974).

    Article  CAS  Google Scholar 

  16. Zubay, G., and Doty, P., J. molec. Biol., 1, 1–20 (1959).

    Article  CAS  Google Scholar 

  17. Latt, S., Proc. natn. Acad. Sci. U.S.A. 70, 3395–3399 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Gursky, G. V., Zasedatelev, A. S., and Strelzov, S. A., Studia Biophys., 40, 105–108 (1973).

    Google Scholar 

  19. Angerer, L. M., Georghious, S., and Moudrianakis, E. N., Biochemistry, 13, 1075–1082 (1974).

    Article  CAS  Google Scholar 

  20. Bartley, J. A., and Chalkley, R. J., Biol. Chem., 247, 3647–3655 (1972).

    CAS  Google Scholar 

  21. Simpson, R. T., Biochemistry, 11, 2003–2008 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BRODIE, S., GIRON, J. & LATT, S. Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer. Nature 253, 470–471 (1975). https://doi.org/10.1038/253470a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/253470a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing