Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted distribution of NAD domain among glycolytic enzymes

Abstract

X-RAY crystallographic studies have indicated that four dehydrogenases1–4, including lactate1 and glyceraldehyde phosphate4 dehydrogenase, contain a central parallel β sheet consisting of six strands flanked by four α helices. This super-secondary structure5 is called the dinucleotide fold or nicotinamide adenine dinucleotide (NAD) domain since it forms an NAD-binding site at the C terminus of the β sheet. The dinucleotide fold can be considered as two roughly identical mononucleotide domains each containing about 60 residues arranged in an alternating βαβαβ sequence and related by an approximate twofold axis5. The aromatic specificity site of subtilisin6,7 and the flavin-binding site of flavodoxin8,9 seem5 to be formed by a secondary structure very similar to a mononucleotide domain of the dehydrogenases. Crystallographic studies have shown that the structures of phosphoglycerate kinase10,11, hexokinase12, adenylate kinase13, phosphoglycerate mutase14 and triosephosphate isomerase15 also contain β sheets containing at least five strands flanked by at least three α helices. The nucleoside phosphate or, in the case of the mutase and isomerase, the sugar phosphate-binding site for each of these enzymes is either known10–12, or strongly suspected13–15 to be located at the C terminus of the β sheet. Differences occur, however, in some of these supersecondary structures relative to the NAD domain of the dehydrogenase family as regards the direction of the β strands12, the location of the binding site relative to the plane of the β sheet12, and most significantly, the sequential order or connectivity of the individual strands in the β sheet12–14. Whether these related supersecondary structures represent convergent5,12 or divergent evolutionary processes4,16, or both17, is a topic of active debate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, M. J., et al., Nature, 227, 1098–1103 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Hill, E., Tsernoglou, D., Webb, L., and Banaszak, L. J., J. molec. Biol., 72, 577–589 (1972).

    Article  CAS  Google Scholar 

  3. Bränden, C. I., et al., Proc. natn. Acad. Sci. U.S.A., 70, 2439–2442 (1973).

    Article  ADS  Google Scholar 

  4. Buehner, M., Ford, G. C., Moras, D., Olsen, K. W., and Rossmann, M. G., Proc. natn. Acad. Sci. U.S.A., 70, 3052–3054 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Rao, S. T., and Rossmann, M. G., J. molec. Biol., 76, 241–256 (1973).

    Article  CAS  Google Scholar 

  6. Wright, C. S., Alden, R. A., and Kraut, J., Nature, 221, 235–242 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Drenth, J., Hol, W. G. J., Jansonius, J. N., and Koekoek, R., Cold Spring Harb. Symp. quant. Biol., 36, 107–116 (1971).

    Article  CAS  Google Scholar 

  8. Watenpaugh, K. D., Sicker, L. C., Jensen, L. H., LeGall, T., and Dubourdieu, M., Proc. natn. Acad. Sci. U.S.A., 69, 3185–3188 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Andersen, R. D., et al., Proc. natn. Acad. Sci., U.S.A., 69, 3189–3191 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Bryant, T. N., Watson, H. C., and Wendell, P. L., Nature, 247, 14–17 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Blake, C. C. F., and Evans, P. R., J. molec. Biol., 84, 585–601 (1974).

    Article  CAS  Google Scholar 

  12. Fletterick, R. J., Bates, D. J., and Steitz, T. A., Proc. natn. Acad. Sci. U.S.A., 72, 38–42 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Schulz, G. E., Elzinga, M., Marx, F., and Schirmer, R. H., Nature, 250, 120–123 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Campbell, J. W., Watson, H. C., and Hodgson, G. I., Nature, 250, 301–303 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Banner, D. W., et al., Nature, 255, 609–614 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Rossman, M. G., Moras, D., and Olsen, K. W., Nature, 250, 194–199 (1974).

    Article  ADS  Google Scholar 

  17. Schulz, G. E., and Schirmer, R. H., Nature, 250, 142–144 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Thompson, S. T., Cass, K. H., and Stellwagen, E., Proc. natn. Acad. Sci. U.S.A., 72, 669–672 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Thompson, S. T., and Stellwagen, E., Proc. natn. Acad. Sci. U.S.A., (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STELLWAGEN, E., CASS, R., THOMPSON, S. et al. Predicted distribution of NAD domain among glycolytic enzymes. Nature 257, 716–718 (1975). https://doi.org/10.1038/257716a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/257716a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing