Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caffeine inhibits cell transformation by 4-nitroquinoline-1-oxide

Abstract

SOMATIC mutation has been considered a likely initiating step in chemical carcinogenesis1–3, chiefly because of the close correlation between the mutagenic and carcinogenic activity of various chemicals4–6. Study of cells from patients with disease predisposing to a high incidence of cancer, such as xeroderma pigmentosum and Fanconi's anaemia, has suggested that defective DNA repair is correlated with this predisposition to malignant transformation. When cells are transformed by 3-methylcholanthrene7, 4-nitroquinoline-1-oxide (4NQO)8, or X irradiation9–11, division is necessary soon after treatment to fix the transformation: if treated cells are unable to grow the transformation is not fixed. These results could be explained if DNA damage induced by a carcinogen is converted into a stable and replicable structural change only by means of DNA replication before the intervention of error-free repair mechanisms. The model of mutagenesis12–14 based on evidence obtained with micro-organisms suggests that errors introduced by an error-prone postreplication repair mechanism are the principal source of mutation. Furthermore, caffeine inhibits “postreplication repair” (presumably an error-prone mechanism) but not excision repair (presumably error-free) in rodent cells15–19. I now report that caffeine reduces the transformation frequency of mouse cells treated with 4NQO. This supports the somatic mutation theory of cell transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burnet, M., Br. med. J., 1, 779–786 (1957).

    Article  CAS  Google Scholar 

  2. Burch, P. R. J., Proc. R. Soc., B 162, 223–262 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Ashley, D. J. B., Br. J. Cancer, 23, 313–328 (1969).

    Article  CAS  Google Scholar 

  4. Ames, B. N., in Chemical Mutagens, 1 (edit. by Hollaender, A.), 267–282 (Plenum, New York, 1971).

    Book  Google Scholar 

  5. Miller, E. C., and Miller, J. A., in Chemical Mutagens, 1 (edit. by Hollaender, A.), 83–119 (Plenum, New York, 1971).

    Book  Google Scholar 

  6. Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D., Proc. natn. Acad. Sci. U.S.A., 70, 2281–2285 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Kakunaga, T., in Topics in Chemical Carcinogenesis (edit. by Nakahara, W., Takayama, S., Sugimura, T., and Odashima, S.), 32–34 (University of Tokyo Press, Tokyo, 1972); Cancer Res. 35, 1637–1642 (1975).

    Google Scholar 

  8. Kakunaga, T., Int. J. Cancer, 14, 736–742 (1974).

    Article  CAS  Google Scholar 

  9. Borek, C., and Sachs, L., Nature, 210, 276–287 (1966).

    Article  ADS  CAS  Google Scholar 

  10. Borek, C., and Hall, E., Nature, 243, 450–453 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Terzaghi, M., and Little, J. B., Nature, 253, 548–549 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Witkin, E. M., A. Rev. Genet., 3, 525–552 (1969); in Mutation as Cellular Process, Ciba Foundation Symp. (edit. by Wolstenholm, G. E. W., and O'Connor, M.), 36–49; Mutation Res., 8, 9–14 (1969).

    Google Scholar 

  13. Kondo, S., Ichikawa, H., Iwo, K., and Kato, T., Genetics, 66, 187–217 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kondo, S., in Advances in Biophysics, 7 (edit. by Kotani, M.), 91–162 (University of Tokyo Press, Tokyo, 1975).

    Google Scholar 

  15. Cleavers, J. E., and Thomas, G. H., Biochem. biophys. Res. Commun., 36, 203–208 (1969).

    Article  Google Scholar 

  16. Fujiwara, Y., and Kondo, T., Biochem. biophys. Res. Commun., 47, 557–564 (1972).

    Article  CAS  Google Scholar 

  17. Trosko, J. E., and Chu, E. H. Y., Chem. Biol. Interactions, 6, 317–332 (1973).

    Article  CAS  Google Scholar 

  18. Cleaver, J. E., Adv. Radiat. Biol., 4, 1–75 (1974).

    Article  CAS  Google Scholar 

  19. Lehmann, A. R., and Kirk-Bell, S., Mutat. Res., 26, 73–82 (1974).

    Article  CAS  Google Scholar 

  20. Kakunaga, T., Int. J. Cancer, 12, 463–473 (1973).

    Article  CAS  Google Scholar 

  21. Zajdela, F., and Latarjet, R., C. r. hebd. séanc. Acad. Sci., 277, 1073–1076 (1973).

    CAS  Google Scholar 

  22. Donovan, P. J., and DiPaolo, J. A., Cancer Res., 34, 2720–2727 (1974).

    CAS  PubMed  Google Scholar 

  23. Kihlman, B. A., Mutat. Res., 26, 53–71 (1974).

    Article  CAS  Google Scholar 

  24. Kakunaga, T., Igaku No Ayumi, 84, 799–804 (1973).

    Google Scholar 

  25. Bertram, J. S., and Heidelberger, C., Cancer Res., 34, 524–537 (1974).

    Google Scholar 

  26. Cleaver, J. E., and Bootsma, D., A. Rev. Genet. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KAKUNAGA, T. Caffeine inhibits cell transformation by 4-nitroquinoline-1-oxide. Nature 258, 248–250 (1975). https://doi.org/10.1038/258248a0

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/258248a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing