Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient X-ray sources

Abstract

IN the eccentric-orbit binary model1,2, a compact object is in an eccentric orbit around a more massive, slightly evolved star. If the compact object accretes mass from the stellar wind of the normal star, the accretion rate is time dependent, so that the resulting X-ray emission would show a maximum at periastron (in the absence of absorption extinction) and a minimum at apastron. It is also possible that accretion might arise from direct mass transfer resulting from contraction of the Roche lobe with decreasing primary to secondary distance. We show here that the stellar wind model, is adequate to describe the majority of transient X-ray sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, D. H., Parkinson, J. H., and Caswell, J. L., Nature, 254, 674–676 (1975).

    Article  ADS  Google Scholar 

  2. Pacini, F., and Shapiro, S. L., Nature, 255, 618–619 (1975).

    Article  ADS  Google Scholar 

  3. Gott, J. R., Astrophys. J., 173, 227–234 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Ives, J. C., Sanford, P. W., Bell-Burnell, S. J., Nature, 254, 578–580 (1975).

    Article  ADS  Google Scholar 

  5. Brecher, K., Nature, 257, 203 (1975).

    Article  ADS  Google Scholar 

  6. Ricketts, M. J., Pounds, K. A., and Turner, M. J. L., Nature, 257, 657–658 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Boley, F., and Wolfson, R., IAU Circ., No. 2819 (1975).

  8. Clark, D. H., and Caswell, J. L., Mon. Not. R. astr. Soc. (in the press).

  9. Lea, S., and Margon, B., Astrophys. Lett., 13, 33–37 (1973).

    Article  ADS  Google Scholar 

  10. Kaluzienski, J. L., Holt, S. S., Boldt, E. A., Serlemitsos, P. J., Nature, 256, 633–634 (1975).

    Article  ADS  Google Scholar 

  11. Fabian, A. C., Pringle, J. E., and Webbink, R. F., Nature, 255, 208 (1975).

    Article  ADS  Google Scholar 

  12. Amnuel, P. R., Guseinov, O. H., and Rakhamimov, Sh., Jr, Astrophys. Space Sci., 29, 331–342 (1974).

    Article  ADS  Google Scholar 

  13. Paczynski, B., A. Rev. Astr. Astrophys., 9, 183–208 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Tademaru, E., and Harrison, E. R., Nature, 254, 676–677 (1975).

    Article  ADS  Google Scholar 

  15. Sutantyo, W., Astr. Astrophys., 41, 47–52 (1975).

    ADS  Google Scholar 

  16. Hulse, R. A., and Taylor, J. H., Astrophys. J., 195, L51–L53 (1975).

    Article  ADS  Google Scholar 

  17. Davison, P. J. N., and Tuohy, I. R., Mon. Not. R. astr. Soc. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLARK, D., PARKINSON, J. Transient X-ray sources. Nature 258, 408–409 (1975). https://doi.org/10.1038/258408a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/258408a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing