Abstract
NITRATE assimilation is one of the two major biological processes by which inorganic nitrogen is converted to ammonia and thence to organic nitrogen. Photosynthetic organisms, with the possible exception of some blue-green algae and plants that have a symbiotic association with rogen-fixing bacteria, derive most of their nitrogen from nitrate1. The rate-controlling and regulated step in the process of nitrate assimilation seems to be the conversion of nitrate to nitrite, catalysed by the enzyme nitrate reductase2. There is a good correlation between the activity of this enzyme and the yield of grain protein in several cereal crops3–5. Nitrate arising from chemical fertilisers and industrial wastes is also a major factor contributing to the growth of algae and other microorganisms, leading to the eutrophication of lakes and streams. Thus, the control of nitrate assimilation can be important from the standpoint of both agricultural productivity and water resource management.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bowen, H. J. M., Trace Elements in Biochemistry (Academic, London and New York, 1966).
Beevers, L., and Hageman, R. H., in Photophysiology, 7 (edit. by Giese, A. C.), 85–113 (Academic, London and New York, 1972).
Eilrich, G. L., and Hageman, R. H., Crop Sci., 13, 59–66 (1973).
Deckard, E. L., Lambert, R. J., and Hageman, R. H., Crop Sci., 13, 343–350 (1973).
Johnson, C. B., Whittington, W. J., and Blackwood, G. C., Nature, 262, 133–134 (1976).
Solomonson, L. P., Lorimer, G. H., Hall, R. L., Borchers, R., and Bailey, J. L., J. biol. Chem., 250, 4120–4127 (1975).
Solomonson, L. P., Biochim. biophys. Acta. 334, 297–308 (1974).
Lorimer, G. H., Gewitz, H. S., Volker, W., Solomonson, L. P., and Vennesland, B., J. biol. Chem., 249, 6074–6979 (1974).
Losada, M., Paneque, A., Aparicio, P. J., Vega, J. M., Cárdenas, J., and Herrara, J., Biochem. biophys. Res. Commun., 38, 1009–1015 (1970).
Pistorius, E. K., Gewitz, H. S., Voss, H., and Vennesland, B., Planta, 128, 73–80 (1976).
Warburg, O., Biochem. Z., 103, 188–217 (1920).
Bowes, G. W., Ogren, L., and Hageman, R. H., Biochem. biophys. Res. Commun., 45, 716–722 (1971).
Andrews, T. J., Lorimer, G. H., and Tolbert, N. E., Biochemistry, 12, 11–17 (1973).
Lorimer, G. H., and Andrews, T. J., Nature, 243, 359–360 (1973).
Kelly, G. J., Latzko, E., and Gibbs, M., A. Rev. Plant Physiol. 27, 181–205 (1976).
Nelson, E. B., and Tolbert, N. E., Archs Biochem. Biophys., 141, 102–110 (1970).
Loussaert, D., and Hageman, R. H., Plant Physiol. (supplement), 57, 38 (1976).
Solomonson, L. P., and Vennesland, B., Biochim. biophys. Acta., 267, 544–557 (1972).
Guilbault, G. G., and Kramer, D. N., Anal. Chem., 38, 834–836 (1966).
VanBuuren, K. J. H., Zuurenden, K. P. F., VanGelder, B. F., and Maijser, A. V., Biochim. biophys. Acta. 256, 243–257 (1972).
Warburg, O., and Krippahl, G. Z., Naturforschung, 156, 197–200 (1960).
Vennesland, B., and Jetschmann, K., Planta, 128, 81–84 (1976).
Blumenthal, S. G., Butler, G. W., and Conn, E. E., Nature, 197, 718–719 (1963).
Fowden, L., and Bell, E. A., Nature, 206, 110–112 (1965).
Heimer, Y. M., and Filner, P., Biochim. biophys. Acta. 230, 362–372 (1971).
Schloemer, R. H., and Garrett, R. H., J. Bact., 118, 259–269 (1974).
Wray, J. L., and Filner, P., Biochem. J., 119 715–725 (1970).
Notton, B. A., and Hewitt, E. J., FEBS Lett., 18, 19–22 (1971).
Solomonson, L. P., and Vennesland, B., Plant Physiol., 50, 421–424 (1972).
Losada, M., Paneque, A., Aparicio, P. J., Vega, J. M., Cárdenas, J., and Herrara, J., Biochem. biophys. Res. Commun., 38, 1009–1015 (1970).
Lips, S. H., and Avissar, Y., Eur. J. Biochem., 29, 20–24 (1972).
Lips, S. H., Plant Physiol., 55, 598–601 (1975).
Kagan Zur, V., and Lips, S. H., Eur. J. Biochem., 59, 17–23 (1975).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
SOLOMONSON, L., SPEHAR, A. Model for the regulation of nitrate assimilation. Nature 265, 373–375 (1977). https://doi.org/10.1038/265373a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/265373a0
This article is cited by
-
Soil Compaction Affects Root Growth and Gene Expression of Major N-Assimilating Enzymes in Wheat
Journal of Soil Science and Plant Nutrition (2022)
-
Sea surface phytoplankton community response to nutrient and light changes
Marine Biology (2020)
-
Cyanide action in plants — from toxic to regulatory
Acta Physiologiae Plantarum (2006)
-
Nitrate reductase in needles, roots and trunk wood of spruce trees [Picea abies (L.) Karst.]
Trees (1991)
-
Ammonia rhythm in Microcystis firma studied by in vivo 15N and 31P NMR spectroscopy
Archives of Microbiology (1991)