Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is hyperosmotic neurosecretion from motor nerve endings a calcium-dependent process?

Abstract

SPONTANEOUS liberation of neurotransmitter quanta is strongly affected by the osmotic pressure of the extracellular fluid. Elevation of the osmolarity by 20–30% increases the rate of release from motor nerve endings by more than one order of magnitude1,2. In this respect the neuromuscular junction resembles some other secretory systems3–5. The mechanism of this hyperosmotic neurosecretion is not yet understood; extracellular calcium ions are not directly responsible, since this effect can be produced in their absence6. Recently, it has been suggested that the liberation of neurotransmitter is regulated by the intracellular concentration of free calcium ions6–8. We have therefore examined the hypothesis that hyperosmotic neurosecretion originates from an increase in internal calcium concentration ([Ca]in). At the frog neuromuscular synapse however, it is impossible at present to estimate directly free [Ca]in; hence we used an indirect technique, which is based on two assumptions; first, the frequency of the miniature endplate potentials (m.e.p.p.s.) reflects free [Ca]in. Second, the movement of calcium ions across the presynaptic membrane is governed by the electrochemical gradient, and by the calcium conductance (gCa). If hyperosmotic neurosecretion is caused by an increase in [Ca]in, then increasing gCa, under reversed electrochemical gradient for the calcium should cause a reduction in the effect of hyperosmotic stress on transmitter release. We report that hyperosmotic neurosecretion is dependent on [Ca]in.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fatt, P. & Katz, B. J. Physiol., Lond. 117, 109–128 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Furshpah, E. J. J. Physiol., Lond. 134, 689–699 (1956).

    Article  Google Scholar 

  3. Hayward, J. N. & Vincent, J. D. J. Physiol., Lond. 210, 947–972 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moses, A. M., Miller, M. & Streeter, D. M. P. Metabolism 25, 697–721 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Hays, R. M. New Engl. J. Med. 295, 657–665 (1976).

    Google Scholar 

  6. Blioch, Z., Glagoleva, I. M., Lieberman, E. A. & Nenashev, V. A. J. Physiol., Lond. 199, 11–35 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rahamimoff, R. & Alnaes, E. Proc. natn. Acad. Sci. U.S.A. 70, 3613–3616 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Miledi, R. Proc. R. Soc. B. 183, 421–425 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. J. Physiol., Lond. 218, 709–755 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liley, A. W. J. Physiol., Lond. 134, 427–433 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker, P. F., Meves, M. & Ridgway, E. B. J. Physiol., Lond. 231, 527–548 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooke, J. D. & Quastel, D. M. J. J. Physiol., Lond. 228, 435–458 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katz, B. & Miledi, R. J. Physiol., Lond. 203, 459–487 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alnaes, E. & Rahamimoff, R. J. Physiol., Lond. 238, 285–306 (1975).

    Article  Google Scholar 

  15. Rahamimoff, R. et al. Cold Spring Harb. Symp. quant. Biol. 40, 107–116 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Scarpa, A. & Azzone, G. F. J. biol. Chem. 243, 5132–5138 (1968).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHIMONI, Y., ALNAES, E. & RAHAMIMOFF, R. Is hyperosmotic neurosecretion from motor nerve endings a calcium-dependent process?. Nature 267, 170–172 (1977). https://doi.org/10.1038/267170a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/267170a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing