Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A regenerating neurone in the leech can form an electrical synapse on its severed axon segment

Abstract

WHEN the nervous system develops, its constituent neurones establish connections with certain selected elements while rejecting others in a fashion that gives the completed system the precision it requires to function. Such specificity is also manifested during regeneration in the central nervous system (CNS)1–3. For example, regeneration and recognition have been demonstrated with electrophysiological techniques in the leech CNS4,5, where individual sensory neurones can select their normal postsynaptic targets from among apparently hundreds of alternatives, re-establishing chemical synaptic connections. The leech CNS has also provided an example of neurones re-establishing electrical continuity after surgical disruption of a connecting axon6. Such electrically connected ‘S-cell’ interneurones, one of which is situated in each of the 21 segmental ganglia of the leech, are linked at the ends of their axons by electrical synapses across which large molecules cannot pass7. The synapse between two S interneurones occurs in the axon bundles (connectives) that join ganglia. The discovery of this junction and the use of the enzyme horseradish peroxidase (HRP) as an intracellular marker have permitted a detailed morphological and physiological analysis of the steps by which a regenerating axon re-establishes synaptic contact with its proper target. We report here that one such step can be the formation of an electrical synapse between the regenerating neurone and its own severed axon segment, thereby restoring the neurone's functional integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaze, R. M. & Keating, M. J. Nature 237, 375–378 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Hunt, R. K. & Jacobson, M. Curr. Tops. Devl Biol. 8, 203–259 (1974).

    Article  CAS  Google Scholar 

  3. Yoon, M. Cold Spring Harb. Symp. quant. Biol. 40, 503–519 (1976).

    Article  CAS  Google Scholar 

  4. Baylor, D. A. & Nicholls, J. G. Nature 232, 268–269 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Jansen, J. K. S. & Nicholls, J. G. Proc. natn. Acad. Sci. U.S.A. 69, 636–639 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Frank, E., Jansen, J. K. S. & Rinvik, E. J. comp. Neurol. 159, 1–13 (1975).

    Article  CAS  Google Scholar 

  7. Muller, K. J., Carbonetto, S. T. & Thomas, B. Carnegie Inst. Yrbk 75, 90–97 (1976).

    Google Scholar 

  8. Kuffler, S. W. & Potter, D. D. J. Neurophysiol. 27, 290–320 (1964).

    Article  CAS  Google Scholar 

  9. Nicholls, J. G. & Baylor, D. A. J. Neurophysiol. 31, 740–756 (1968).

    Article  CAS  Google Scholar 

  10. Miyazaki, S., Nicholls, J. G. & Wallace, B. G. Cold Spring Harb. Symp. quant. Biol. 40, 483–493 (1976).

    Article  CAS  Google Scholar 

  11. Miyazaki, S. & Nicholls, J. G. Proc. R. Soc. B 194, 295–311 (1976).

    ADS  CAS  Google Scholar 

  12. Muller, K. J. & McMahan, U. J. Anat. Rec. 181, 432 (1975).

    Google Scholar 

  13. Muller, K. J. & McMahan, U. J. Proc. R. Soc. B 194, 481–499 (1976).

    ADS  CAS  Google Scholar 

  14. Perrachia, C. J. Cell Biol. 57, 54–65 (1973); 57, 66–76 (1973).

    Article  Google Scholar 

  15. Hoy, R. R., Bittner, G. D. & Kennedy, D. Science 156, 251–252 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Kennedy, D. & Bittner, G. D. Cell Tiss. Res. 148, 97–110 (1974).

    Article  CAS  Google Scholar 

  17. Birse, S. C. & Bittner, G. D. Brain Res. 113, 575–581 (1976).

    Article  CAS  Google Scholar 

  18. Nordlander, R. H. & Singer, M. Z. Zellforsch. 126, 157–181 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CARBONETTO, S., MULLER, K. A regenerating neurone in the leech can form an electrical synapse on its severed axon segment. Nature 267, 450–452 (1977). https://doi.org/10.1038/267450a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/267450a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing