Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship between β-adrenergic receptors and adenylate cyclase in HeLa cells

Abstract

THE physiological actions of many hormones and neurotransmitters are mediated through activation of adenylate cyclase (ATP pyrophosphate lyase [cyclising] EC 4.6.1.1) by specific cell surface receptors for each substance. The consequent increases in intracellular cyclic AMP lead to activation of protein kinases and a host of alterations in cell physiology, depending on the type of cell stimulated1. Adrenergic receptors, responsive to β-hydroxylated catecholamines, were divided into α- and β-types by Ahlquist2 using classical pharmacological techniques. The β-adrenergic effects of catecholamines occur through a receptor-mediated stimulation of adenylate cyclase activity3. Although β-adrenergic receptors have often been described as ‘tightly coupled’ to adenylate cyclase, recent evidence suggests that the receptor and the enzyme are physically discrete entities4,5, probably the products of different genes6. We have found that HeLa cells contain β-adrenergic receptors and that the number of receptors per cell, but not the cellular content of adenylate cyclase, increases markedly during exposure of the cell to butyrate7. Here we present direct evidence that the HeLa cell β-adrenergic receptor can exist in a form either ‘coupled’ to or ‘uncoupled’ from adenylate cyclase. A model system for studies of receptor–adenylate cyclase interactions is described, and preliminary results of studies on the mechanism of coupling are reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robison, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP (Academic, New York, 1971).

    Google Scholar 

  2. Ahlquist, R. P. Am. J. Physiol. 153, 586–600 (1948).

    CAS  PubMed  Google Scholar 

  3. Sutherland, E. W. & Robison, G. A. Pharmac. Rev. 18, 145–161 (1966).

    CAS  Google Scholar 

  4. Cuatrecasas, P. A. Rev. Biochem. 43, 169–214 (1974).

    Article  CAS  Google Scholar 

  5. Orly, J. & Schramm, M. Proc. natn. Acad. Sci. U.S.A. 73, 4410–4414 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Insel, P. A. et al. Molec. Pharmac. 12, 1062–1069 (1976).

    CAS  Google Scholar 

  7. Tallman, J. F., Smith, C. C. & Henneberry, R. C. Proc. natn. Acad. Sci. U.S.A. 74, 873–877 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Henneberry, R. C. & Fishman, P. H. Expl Cell Res. 103, 55–62 (1976).

    Article  CAS  Google Scholar 

  9. Steinberg, R. A., Levinson, B. B. & Tomkins, G. M. Cell 5, 29–35 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Van Obberghen, E., DeMeyts, P. & Roth, J. J. biol. Chem. 251, 6844–6851 (1976).

    CAS  PubMed  Google Scholar 

  11. Rittenhouse, H. G. & Fox, C. F. Biochem. biophys. Res. Commun. 57, 323–331 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Ash, J. G. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 73, 4575–4579 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Resch, K., Bouillon, D., Genisa, D. & Averdunk, R. Nature 265, 349–351 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Schwartz, J. P., Passoneau, J. V., Johnson, G. S. & Pastan, I. J. biol. Chem. 249, 4138–4143 (1974).

    CAS  PubMed  Google Scholar 

  15. Ginsburg, E., Solomon, D., Sreevalsan, T. & Freese, E. Proc. natn. Acad. Sci. U.S.A. 70, 2457–2461 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Wright, J. A. Expl Cell Res. 78, 456–460 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Schneider, F. H. Biochem. Phamac. 25, 2309–2317 (1976).

    Article  CAS  Google Scholar 

  18. Fishman, P. H., Simmons, J. L., Brady, R. O. & Freese, E. Biochem. biophys. Res. Commun. 59, 292–299 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Henneberry, R. C., Fishman, P. H. & Freese, E. Cell 5, 1–9 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Simmons, J. L., Fishman, P. H., Freese, E. & Brady, R. O. J. Cell Biol. 66, 414–424 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Griffen, M. J., Price, G. H., Bazzell, K. L., Cox, R. P. & Ghosh, N. K. Archs Biochem. Biophys. 164, 619–623 (1974).

    Article  Google Scholar 

  22. Ghosh, N. K. & Cox, R. P. Nature 259, 416–417 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Leder, A. & Leder, P. Cell 5, 319–322 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Altenburg, B. C., Via, D. P. & Steiner, S. H. Expl Cell Res. 102, 223–231 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HENNEBERRY, R., SMITH, C. & TALLMAN, J. Relationship between β-adrenergic receptors and adenylate cyclase in HeLa cells. Nature 268, 252–254 (1977). https://doi.org/10.1038/268252a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/268252a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing