Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isolation method affects transformed cell line karyotype

Abstract

NEOPLASTIC cells frequently have a karyotype deviant from the normal diploid state1. Transformation of cells in culture by tumour viruses can be used as a model of neoplastic transformation2,3 and is generally considered to be accompanied by extensive changes in chromosome number and morphology4–7. It has not been clear whether these changes are the cause or the result of transformation. It has been suggested that for one DNA tumour virus, simian virus 40 (SV40), the initial step in transformation is the formation of polyploid cells5,8,9 and near-diploid cells in some SV40-transformed cell lines are thought to arise from multipolar mitoses9. In contrast, stable diploid, or occasionally pseudodiploid transformed cell lines have been obtained after transformation by various tumour viruses10–17. Explanations for these apparently contrasting results could be based on differences in the origin of the transformed material18 or on the method of transformation. We have used Chinese hamster Kupffer cell clones to demonstrate that two common methods of isolating transformed cell lines—either from colonies with irregular morphology or from dense foci2—can result in different degrees of karyotypic change in the isolated cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atkin, N. B. Cytogenetic Aspects of Malignant Transformation (Karger, New York, 1976).

    Google Scholar 

  2. Benjamin, T. L. Meth. Cell Biol. 8, 367–437 (1974).

    Article  CAS  Google Scholar 

  3. Tooze, J. The Molecular Biology of Tumor Viruses (Cold Spring Harbor Laboratory, 1973).

    Google Scholar 

  4. Defendi, V. Progr. exp. Tumor Res. 8, 125–188 (1966).

    Article  CAS  Google Scholar 

  5. Lehman, J. M. & Defendi, V. J. Virol. 6, 738–749 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pontćn, J. Spontaneous and Virus Induced Transformation in Cell Culture (Springer, New York, 1971).

    Book  Google Scholar 

  7. Lehman, J. M. Int. J. Cancer 13, 164–172 (1974).

    Article  CAS  Google Scholar 

  8. Hirai, K., Lehman, J. M. & Defendi, V. J. Virol. 8, 828–835 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lehman, J. M. & Bloustein, P. Int. J. Cancer 14, 771–778 (1974).

    Article  CAS  Google Scholar 

  10. Lavialle, C. H. et al. Archs Virol. 49, 127–139 (1975).

    Article  CAS  Google Scholar 

  11. Brailovsky, C., Wicker, R., Suarez, H. G. & Cassingena, R. Int. J. Cancer 2, 133–142 (1967).

    Article  CAS  Google Scholar 

  12. Popescu, N. C., Olinici, C. D., Casto, B. C. & Di Paulo, J. A. Int. J. Cancer 14, 461–472 (1974).

    Article  CAS  Google Scholar 

  13. Black, P. H. & White, B. J. J. exp. Med. 125, 629–646 (1967).

    Article  CAS  Google Scholar 

  14. Defendi, V. & Lehman, J. M. J. cell. comp. Physiol. 66, 351–409 (1965).

    Article  CAS  Google Scholar 

  15. Yamamoto, T., Rabinowitz, Z. & Sachs, L. Nature new Biol. 243, 247–250 (1973).

    Article  CAS  Google Scholar 

  16. Nachtigal, M., Albrecht, T. & Rapp, F. Intervirology 4, 77–90 (1974).

    Article  CAS  Google Scholar 

  17. Kelly, F. Cancer Res. 35, 1210–1213 (1975).

    CAS  PubMed  Google Scholar 

  18. Nachtigal, M., Melnick, J. L. & Butel, J. S. J. natn. Cancer Inst. 47, 35–45 (1971).

    CAS  Google Scholar 

  19. Clark, J. M. & Pateman, J. A. Expl Cell Res. (in the press).

  20. Federoff, S. J. natn. Cancer Inst. 38, 607–611 (1967).

    Google Scholar 

  21. Pope, J. H. & Rowe, W. P. J. exp. Med. 120, 121–127 (1964).

    Article  CAS  Google Scholar 

  22. Slack, C., Morgan, R. H. M., Carritt, B., Goldfarb, P. S. G. & Hooper, M. L. Expl Cell Res. 98, 1–14 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLARK, J., PATEMAN, J. Isolation method affects transformed cell line karyotype. Nature 272, 262–264 (1978). https://doi.org/10.1038/272262a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/272262a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing