Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective inhibitors of biosynthesis of aminergic neurotransmitters

Abstract

ALTHOUGH the enzymatic decarboxylation of amino acids is of substantial importance to biochemistry1, there are few inhibitors of the decarboxylase enzymes which combine activity with selectivity. Several of the amines formed by in vivo decarboxylation of amino acids (biogenic amines) have key roles in physiology. The neurotransmitters dopamine, 5-hydroxytryptamine, histamine and γ-aminobutyric acid result from such enzymatic decarboxylation; dopamine in turn serves as the precursor of noradrenaline2. The involvement of catecholamines in peripheral and central control of blood pressure has been the subject of many investigations; for example, elevated catecholamine levels were found in some of the 27 brain regions investigated in spontaneously hypertensive rats. Specifically, elevated noradrenaline and dopamine levels were found in regions implicated in the control of arterial blood pressure3. A widely reported biochemical theory of schizophrenia suggests disturbance of the dopaminergic system as the causative factor.4 Elevated histamine levels are believed to be involved in such diseases as allergy, hypersensitivity, gastric ulcer and inflammation5. Ornithine decarboxylase is also an important target for inhibition, as it is the initial enzyme in the biosynthesis of polyamines and increased levels of the latter have been associated with rapid cell division, including tumour growth6. Thus, selective inhibitors of these key enzymes could be of help in elucidating the complexities of neurophysiology and neurochemistry, as well as of service in medicine by correcting pathological levels of these agonists. We report here examples of the transformation of amino acids (C) into the corresponding substituted 3-fluoro-alanines (B), resulting in potent time-dependent decarboxylase inactivators (Table 1). In addition, we have prepared the fluoromethyl derivatives (D) corresponding to some of the amine products of these decarboxylases and find them also to be inactivators (Table 1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boeker, E. A. & Snell, E. E. Enzymes 6, 217–253 (1972).

    Article  CAS  Google Scholar 

  2. Handbook of Psychopharmacology (eds Iversen, L. L., Iversen, S. D. & Snyder, S. H.) Vols 3 & 4 (Plenum, New York, 1975).

  3. Versteeg, D. H. G. et al. Prog. Brain Res. 47, 111–116 (1977).

    Article  CAS  Google Scholar 

  4. Snyder, S. H., Banerjee, S. P., Yamamura, H. I. & Greenberg, D. Science 184, 1243–1253 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Douglas, W. W. in The Pharmacological Basis of Therapeutics 5th edn (eds Goodman, L. S. & Gilman, A.) 590–629 (MacMillan, New York, 1975).

    Google Scholar 

  6. Russell, D. H. in Polyamines in Normal and Neoplastic Growth (Russell, D. H. ed.) 1–13 (Raven, New York, 1973).

    Google Scholar 

  7. Kollonitsch, J., Barash, L., Kahan, F. M. & Kropp, H. Nature 243, 346–347 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Kollonitsch, J. & Barash, L. J. Am. chem. Soc. 98, 5591–5593 (1976).

    Article  CAS  Google Scholar 

  9. Kahan, F. M. & Kropp, H. 15th ICAAC, Washington, D.C., #100 (1975).

  10. Wang, E. & Walsh, C. Biochemistry 17, 1313–1321 (1978).

    Article  CAS  Google Scholar 

  11. Walsh, C. Horizons Biochem. Biophys. 3, 36–81 (1977).

    CAS  Google Scholar 

  12. Abeles, R. H. & Maycock, A. L. Acct. Chem. Res. 9, 313–319 (1976).

    Article  CAS  Google Scholar 

  13. Rando, R. R. Acct. Chem. Res. 8, 281–288 (1975); Science 185, 320–324 (1974); Nature 250, 586–587 (1974).

    Article  CAS  Google Scholar 

  14. Kollonitsch, J., Barash, L. & Doldouras, G. A. J. Am. chem. Soc. 92, 7494–7495 (1970).

    Article  CAS  Google Scholar 

  15. Kollonitsch, J., Marburg, S. & Perkins, L. M. J. org. Chem. 40, 3808–3809 (1975).

    Article  Google Scholar 

  16. Biochemical Preparations 4, 46–50 (Wiley, New York, 1955).

  17. Taub, D. & Patchett, A. A. Tetrahedron Lett. 2745–2748 (1977).

  18. Metcalf, B. W. & Jund, K. Tetrahedron Lett. 3689–3692 (1977).

  19. Aster, S. D., Maycock, A. L., Patchett, A. A. & Taub, D. 175th National ACS Mtg, Anaheim, California, MEDI 58 (1978).

  20. Metcalf, B. W., Jung, M. J., Lippert, B., Casara, P. & Danzin, C. 173rd National ACS Mtg New Orleans, Louisiana, MEDI 25 (1977).

  21. Ellenbogen, L., Markley, E. & Taylor, R. J. Jr Biochem. Pharmac. 18, 683–685 (1969).

    Article  CAS  Google Scholar 

  22. Lineweaver, H. & Burk, D. J. Am. chem. Soc. 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  23. Wu, J.-Y., Matsuda, T. & Roberts, E. J. biol. Chem. 248, 3029–3034 (1973).

    CAS  Google Scholar 

  24. Ono, M., Inoue, H., Suzuki, F. & Takeda, Y. Biochim. biophys. Acta 284, 285–297 (1972).

    Article  CAS  Google Scholar 

  25. Mamont, P. S., Duchesne, M.-C., Grove, J. & Bey, P. Biochem. biophys. Res. Commun. 81, 58–66 (1978).

    Article  CAS  Google Scholar 

  26. Christenson, J. G., Dairman, W. & Udenfriend, S. Archs Biochem. Biophys. 141, 356–367 (1970).

    Article  CAS  Google Scholar 

  27. Håkanson, R. Biochem. Pharmac. 12, 1289–1296 (1963).

    Article  Google Scholar 

  28. Chang, G. W. & Snell, E. S. Meth. Enzym. 17 B, 663–667 (1971).

    Article  Google Scholar 

  29. Ulm, E. H. & Duggan, D. E. (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KOLLONITSCH, J., PATCHETT, A., MARBURG, S. et al. Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature 274, 906–908 (1978). https://doi.org/10.1038/274906a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/274906a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing