Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for passive electrotonic interactions in red rods of toad retina

Abstract

SINCE Baylor, Fuortes and O'Bryan1 first demonstrated interactions between vertebrate photoreceptor cells, many types of inter-receptor influences have been described2–10. While some of these interactions are mediated by horizontal cells1,2,6, others apparently result from direct contact between the photorecep-tors themselves1,3,4,7–10. Fain et al.10 reported that the red rods of the toad Bufo marinus were coupled by gap (electronic) junctions, and that single rods received detectable signals from other receptors over a retinal area of about 0.5 mm2. This receptive field area is 4–100 times larger than those measured for photoreceptors of a variety of species1,4,7,9,11,12,15. Fain et al. found this extensive spread of rod signals to be inconsistent with network models containing only passive elements and this raised the possibility that some active process, perhaps in the rod membrane, contributed to the spread of rod signals. We report here results which indicate that single rods sum signals over only 1/16th the area previously estimated; this smaller receptive field area implies more intrinsic noise, a larger response to single photon absorptions, and a larger signal-to-noise ratio than predicted by the previously reported results10. Furthermore we find that, as in other species (ref. 13, and Copenhagen and Owen, personal communication),the spread of low-amplitude, light-evoked responses between photoreceptors can be accounted for by purely passive electrical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baylor, D. A., Fuortes, M. G. F. & O'Bryan, P. M. J. Physiol., Lond. 214, 265–294 (1971).

    Article  CAS  Google Scholar 

  2. Fuortes, M. G. F. & Simon, E. J. J.Physiol., Lond. 240, 177–198 (1974).

    Article  CAS  Google Scholar 

  3. Fain, G. L. Science 187, 838–841 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Schwartz, E. A. J. Physiol., Lond. 232, 503–514 (1973).

    Article  CAS  Google Scholar 

  5. Schwartz, E. A. J. Physiol., Lond. 246, 639–651 (1975).

    Article  CAS  Google Scholar 

  6. Stell, W. K., Lightfoot, D. O., Wheeler, T. G. & Leeper, H. F. Science 190, 989–990 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Copenhagen, D. R. & Owen, W. G. J. Physiol., Lond. 259, 251–282 (1976).

    Article  CAS  Google Scholar 

  8. Copenhagen, D. R. & Owen, W. G. Nature 260, 57–59 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Nelson, R. J. comp. Neural. 172, 109–136 (1977).

    Article  CAS  Google Scholar 

  10. Fain, G. L., Gold, G. H. & Dowling, J. E. Cold Spring Harb. Symp. quant. Biol. 40, 547–561 (1976).

    Article  CAS  Google Scholar 

  11. Werblin, F. S. J. Neurophysiol. 33, 342–350 (1970).

    Article  CAS  Google Scholar 

  12. Lasansky, A. & Marchiafava, P. L. J. Physiol., Lond. 236, 171–191 (1974).

    Article  CAS  Google Scholar 

  13. Lamb, T. D. & Simon, E. J. J. Physiol., Lond. 263, 257–286 (1976).

    Article  CAS  Google Scholar 

  14. Brown, J. E. & Pinto, L. H. J. Physiol., Lond. 236, 575–591 (1974).

    Article  CAS  Google Scholar 

  15. Normann, R. A. & Pochobradský, J. J. Physiol., Lond. 261, 15–29 (1976).

    Article  CAS  Google Scholar 

  16. Liebman, P. A. & Entine, G. Vision Res. 8, 761–775 (1968).

    Article  CAS  Google Scholar 

  17. Hárosi, F. I. J. gen. Physiol. 66, 357–382 (1975).

    Article  Google Scholar 

  18. Lamb, T. D. J. Physiol., Lond. 263, 239–255 (1976).

    Article  CAS  Google Scholar 

  19. Jack, J. J. B., Noble, D. & Tsien, R. W. Electrical Current Flow in Excitable Cells (Clarendon, Oxford, 1975).

    Google Scholar 

  20. Fain, G. L. J Physiol., Lond. 261, 71–101 (1976).

    Article  CAS  Google Scholar 

  21. Griff, E. R. & Pinto, L. H. Soc. Neurosci. Abstr. 3, 561 (1977).

    Google Scholar 

  22. Detwiler, P. B., Hodgkin, A. L. & McNaughton, P. A. Nature 274, 562–565 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEEPER, H., NORMANN, R. & COPENHAGEN, D. Evidence for passive electrotonic interactions in red rods of toad retina. Nature 275, 234–236 (1978). https://doi.org/10.1038/275234b0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/275234b0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing