Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Initiation activity of EMC virus RNA, binding to initiation factor eIF-4B and shut-off of host cell protein synthesis

Abstract

PICORNAVIRUSES infecting susceptible animal cells inhibit synthesis of host proteins and direct the cells to synthesise viral proteins1. The mechanism for the shut-off of host cell protein synthesis is not understood, although several experiments indicate that initiation of host protein synthesis is specifically inhibited1. When initiation of protein synthesis is reduced by exposing cells infected by picornaviruses to hypertonic medium, synthesis of viral proteins is greatly favoured over that of host proteins2,3. This suggests that viral templates are more successful in initiation than host templates3. Competition between picornavirus RNA and host mRNAs has been shown directly by in vitro translation experiments4,5. When these RNAs are added together in saturating amounts to a cell-free protein-synthesising system, viral RNA is preferentially translated over host mRNA4,5. This competition can be relieved by addition of initiation factor eIF-4B (previously designated IF-M3)6. This has suggested that eIF-4B may be present in limiting amounts in the translation assays, and that viral and host templates compete for available factor6. This observation is somewhat surprising, as the 5′-terminal cap sequence m7G5′pppXmp... is involved in the binding of mRNA to eIF-4B, and picornavirus RNA is not capped (see refs 7 and 8). It has been found that other nucleotide sequences outside the cap participate in this reaction9, but the presence of 5′-terminal m7G in mRNA promotes interaction with eIF-4B and the initiation process7,8. Therefore, templates with a ‘capped’ 5′-terminal nucleotide bind to ribosomes more rapidly than their unmethylated counterparts10,11. We have shown previously that eIF-4B interacts with the RNA of encephalomyocarditis (EMC) virus, a picornavirus, in a nitrocellulose filter binding assay7. It has also been shown that eIF-4B is required for in vitro translation of EMC virus RNA12. In the present report we have examined the basis for the competition between EMC virus RNA and a cellular mRNA at the molecular level. EMC virus RNA binds to ribosomes at a rate similar to that of capped mRNAs, suggesting that features other than the 5′-terminal m7G are responsible for the binding of this viral RNA. By measuring the relative affinity of globin mRNA and EMC virus RNA for eIF-4B, we have found that the viral RNA has a greater affinity for this initiation factor than globin mRNA. This high affinity for eIF-4B could explain the fast rate of initiation of the viral RNA and the shut-off of host cell protein synthesis after picornavirus infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baltimore, D. in Biochemistry of Viruses (ed. Levy, H. B.) 101–176 (Marcel Dekker, New York, 1969).

    Google Scholar 

  2. Saborio, J. L., Pong, S. S. & Koch, G. J. molec. Biol. 85, 195–211 (1974).

    Article  CAS  Google Scholar 

  3. Nuss, D. L., Opperman, H. & Koch, G. Proc. natn. Acad. Sci. U.S.A. 12, 1258–1262 (1975).

    Article  ADS  Google Scholar 

  4. Lawrence, C. & Thach, R. E. J. Virol. 14, 598–610 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Abreu, S. & Lucas-Lenard, J. J. Virol. 18, 182–194 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Golini, F. et al. Proc. natn. Acad. Sci. U.S.A. 73, 3040–3044 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Shafritz, D. et al. Nature 261, 291–294 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Shatkin, A. J. Cell 9, 645–653 (1976).

    Article  CAS  Google Scholar 

  9. Padilla, M. et al. J. biol. Chem. (in the press).

  10. Rose, J. K. & Lodish, H. F. Nature 262, 32–37 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Weber, L. A., Hickey, E. D., Nuss, D. L. & Baglioni, C. Proc. natn. Acad. Sci. U.S.A. 74, 3254–3258 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Staehelin, T. Trachsel, H., Erni, B., Boschetti, A. & Schreier, M. H. Proc. 10th FEBS Meeting 1975, 309–323 (Elsevier' Amsterdam, 1975).

  13. Weber, L. A., Hickey, E. D., Maroney, P. A. & Baglioni, C. J. biol. Chem. 252, 4007–4010 (1977).

    CAS  PubMed  Google Scholar 

  14. Baltimore, D. & Huang, A. S. J. molec. Biol. 47, 263–273 (1970).

    Article  CAS  Google Scholar 

  15. Moss, B., Gershowitz, A., Weber, L. A. & Baglioni, C. Cell 10, 113–120 (1977).

    Article  CAS  Google Scholar 

  16. Brooker, J. & Marcus, A. FEBS Letts. 83, 118–124 (1977).

    Article  CAS  Google Scholar 

  17. Doyle, S. & Holland, J. J. Virol. 9, 22–28 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ehrenfeld, E. & Lund, H. Virology 80, 297–308 (1977).

    Article  CAS  Google Scholar 

  19. Lee, Y. F., Nomoto, A. & Wimmer, E. Proc. natn. Acad. Sci. U.S.A. 74, 5963 (1977).

    Google Scholar 

  20. Flanegan, J. B., Petterson, R. F., Ambros, V., Hewlett, M. J. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 74, 961–965 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Nomoto, A., Lee, Y. F. & Wimmer, E. Proc. natn. Acad. Sci. U.S.A. 73, 375–380 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Hewlett, M. J., Rose, J. K. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 73, 327–330 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Fernandez-Munoz, R. & Darnell, J. E. J. Virol. 18, 719–726 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Freienstein, C. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 72, 3392–3396 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Wigle, D. T. & Smith, H. E. Nature new Biol. 242, 136–140 (1973).

    Article  CAS  Google Scholar 

  26. Tereba, A. & McCarthy, B. J. Biochemistry 12, 4675–4678 (1973).

    Article  CAS  Google Scholar 

  27. Commerford, S. L. Biochemistry 10, 1993–1999 (1971).

    Article  CAS  Google Scholar 

  28. Fernandez-Munoz, R. & Lavi, U. J. Virol. 21, 820–824 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Segal, I. H. in Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady State Enzyme Systems 46–47 (Wiley, New York, 1975).

    Google Scholar 

  30. Pemberton, R. E., Housman, D., Lodish, H. F. & Baglioni, C. Nature new Biol. 235, 99–102 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAGLIONI, C., SIMILI, M. & SHAFRITZ, D. Initiation activity of EMC virus RNA, binding to initiation factor eIF-4B and shut-off of host cell protein synthesis. Nature 275, 240–243 (1978). https://doi.org/10.1038/275240a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/275240a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing