Abstract
THE fidelity of DNA synthesis has usually been determined from polynucleotide templates of restricted base composition1–3. Mis-matched nucleotides were simply identified as those non-complementary to the template. Error rates estimated in this way are less than were predicted on the basis of Watson–Crick base pairing, 10−2 (refs 4–6), but greater than were inferred from spontaneous mutation frequencies, 10−8–10−11 (ref. 7). However, in vitro error rates measured for the same enzyme vary from one synthetic template to another3,8,9. In addition, the repeating structure of homopolymers and copolymers may, by slippage and looping-out of mis-matched bases10, allow a higher frequency of mis-pairing than natural DNA of random sequence. To avoid these problems, we have recently developed a method for measuring the accuracy of in vitro DNA synthesis using a natural DNA template11. We now report that a DNA polymerase which has a high frequency of mis-incorporation with synthetic polynucleotides1 is also mutagenic when copying natural DNA in vitro.
Similar content being viewed by others
Article PDF
References
Battula, N. & Loeb, L. A. J. biol. Chem. 249, 4086–4093 (1974).
Trautner, T. A., Swartz, M. N. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 48, 449–455 (1962).
Hall, Z. W. & Lehman, I. R. J. molec. Biol. 36, 321–333 (1968).
Mildvan, A. S. A. Rev. Biochem. 43, 357–399 (1974).
Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 71, 4135–4139 (1974).
Loeb, L. A., Springgate, C. F. & Battula, N. Cancer. Res. 34, 2311–2321 (1974).
Drake, J. W. Nature 221, 1132–1132 (1969).
Chang, L. M. S. J. biol. Chem. 248, 6983–6992 (1973).
Springgate, C. F., Battula, N. & Loeb, L. A. Biochem. biophys. Res. Commun. 52, 401–406 (1973).
Chang, L. M. S., Cassani, G. R. & Bollum, F. J. J. biol. Chem. 247, 7718–7723 (1972).
Weymouth, L. A. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 75, 1924–1928 (1978).
Hutchinson, C. A. & Sinsheimer, R. L. J. molec. Biol. 18, 429–447 (1966).
Sanger, F. et al. Nature 265, 687–695 (1977).
Villani, G., Boiteux, S. & Radman, M. Proc. natn. Acad. Sci. U.S.A. 75, 3037–3041 (1978).
Tsiapalis, C. M. Nature 266, 29–31 (1977).
Collett, M. S. & Erikson, R. L. Proc. natn. Acad. Sci. U.S.A. 75, 2021–2024 (1978).
Eigen, M. & Schuster, P. Naturwissenschaften 64, 541–565 (1977).
Zarling, D. A. & Temin, H. M. J. Virol. 17, 74–84 (1976).
Kunkel, T. A. & Loeb, L. A. J. biol. Chem. (in the press).
Kacian, D. L., Watson, K. F., Burny, A. & Spiegelman, S. Biochim. biophys. Acta 246, 365–383 (1971).
Seal, G. & Loeb, L. A. J. biol. Chem. 251, 975–981 (1976).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
GOPINATHAN, K., WEYMOUTH, L., KUNKEL, T. et al. Mutagenesis in vitro by DNA polymerase from an RNA tumour virus. Nature 278, 857–859 (1979). https://doi.org/10.1038/278857a0
Issue date:
DOI: https://doi.org/10.1038/278857a0
This article is cited by
-
Interaction of H-2Eb with an IAP retrotransposon in the A20/2J B cell lymphoma
Immunogenetics (1992)
-
Molecular analysis of neonatal IgA expression: Implications for class switching, allelic polymorphism and somatic mutation
Immunologic Research (1990)
-
An MuLV transmission vector system designed to permit recovery inE.Coli of proviral and cellular flanking sequences
Virus Genes (1988)