Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal co-tolerances in the grass Deschampsia cespitosa

Abstract

METAL tolerance in plants growing on metal-contaminated soils around mines1–3, smelters4 and refineries5 have been reported. While metal tolerances in many dicotyledonous species, such as Becium homblei6, Mimulus guttatus7 and Silene cucubalus8, have been found, the emphasis has largely been placed on the study of populations of a limited number of grass species, especially Agrostis tenuis1,2,9–11, Agrostis stolonifera5,12, Festuca ovina3 and Anthoxanthum odoratum13,14. (Adaptive population responses to a number of elements high in soils were recorded for lead, zinc, copper and nickel, reviewed by Antonovics et al.15.) In addition, tolerances to cadmium4 and arsenic16 have been investigated. Jowett17 and Bradshaw et al.11 have postulated that tolerance to more than one element is dependent on the presence of these elements at elevated levels in the soil, that is, tolerance is specific. A few exceptions to this ‘rule’ have been noted, such as the apparent enhancement of nickel tolerance in a zinc-tolerant population of Agrostis tenuis despite the absence of elevated soil nickel11. We present here evidence of the evolution of co-tolerances to copper, nickel and aluminium in a population of Deschampsia cespitosa (L.) Beauv. Also, the occurrence of co-tolerances for lead and zinc, which were not elevated in the soils from which the population was obtained. A limited number of cadmium-tolerant clones were also found in both populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bradshaw, A. S. Nature 169, 1098–1100 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Jowett, D. Nature 181, 816–817 (1958).

    Article  ADS  Google Scholar 

  3. Wilkins, D. A. Rep. Scot. Plant Breeding Stn 86 (1960).

  4. Coughtrey, P. J. & Martin, M. H. New Phytol. 79, 273–280 (1977).

    Article  CAS  Google Scholar 

  5. Wu, L. & Bradshaw, A. D. Nature 238, 167–169 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Howard-Williams, C. J. Ecol. 58, 741–763 (1970).

    Article  Google Scholar 

  7. Allen, W. R. & Sheppard, P. M. Proc. R. Soc. B177, 177–196 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Ernst, W. H. O. & Weinert, H. Z. Pflanzenphysiol. 66, 258–264 (1972).

    Article  Google Scholar 

  9. Jain, S. K. & Bradshaw, A. D. Heredity 21, 407–441 (1966).

    Article  Google Scholar 

  10. Walley, K. A., Khan, M. S. I. & Bradshaw, A. D. Heredity 33, 309–319 (1976).

    Google Scholar 

  11. Bradshaw, A. D., McNeilly, T. S. & Gregory, R. P. G. Br. ecol. Soc. Symp. 5, 327–343 (1965).

    Google Scholar 

  12. Wu, L., Bradshaw, A. D. & Thurman, D. A. Heredity 34, 165–187 (1975).

    Article  Google Scholar 

  13. Antonovics, J. & Bradshaw, A. D. Heredity 25, 349–362 (1970).

    Article  Google Scholar 

  14. Cox, R. M. & Thurman, D. A. New Phytol. 80, 17–22 (1978).

    Article  CAS  Google Scholar 

  15. Antonovics, J., Bradshaw, A. D. & Turner, R. G. Adv. ecol. Res. 7, 1–85 (1971).

    Article  Google Scholar 

  16. Rocovich, S. E. & West, D. A. Science 188, 263–264 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Jowett, D. thesis, Univ. Wales (1959).

  18. Hutchinson, T. C. & Whitby, L. M. Environ. Conserv. 1, 123–132 (1974).

    Article  Google Scholar 

  19. Whitby, L. M. & Hutchinson, T. C. Environ. Conserv. 1, 191–200 (1974).

    Article  CAS  Google Scholar 

  20. Hutchinson, T. C. & Whitby, L. M. Water, Air, Soil Polln 7, 421–438 (1977).

    ADS  CAS  Google Scholar 

  21. Siegel, S. Non-Parametric Statistics for the Behavioural Sciences (McGraw-Hill, Koegekusha, Tokyo, 1956).

    Google Scholar 

  22. Tatsuyama, K., Egawa, H., Yamamoto, H. & Senmaru, H. Nycol. Soc. Japan 16, 79–85 (1975).

    CAS  Google Scholar 

  23. Stokes, P. M., Hutchinson, T. C. & Krauter, K. Water Polln Res. Canada 8, 178–201 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

COX, R., HUTCHINSON, T. Metal co-tolerances in the grass Deschampsia cespitosa. Nature 279, 231–233 (1979). https://doi.org/10.1038/279231a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/279231a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing