Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A reversible conformational transition in chromatin

Abstract

THE DNA in the nucleosome is tightly wound in about two turns around a core protein octamer (reviewed in refs 1 and 2), and in this conformation the two strands of the double helix cannot be separated. Chromatin known to be transcriptionally active exhibits differences, both in the packing ratio of the DNA and in appearance under the electron microscope. At the same time, the periodicity revealed by nuclease digestion of nucleosomes is preserved, and histones remain attached to the DNA2,3. This evidence strongly suggests that chromatin has the ability to undergo a conformational transition between a folded and an open state. Previous electron microscopic observations4,5 have revealed that at very low ionic strengths nucleosomes undergo two transitions, one apparently involving a dissociation into ‘half-nucleosomes’, the other a transformation to a fully extended state. Transitions have also been deduced from hydro-dynamic studies6 and analysis of thermal denaturation profiles7,8. All these methods are applied to dilute solutions and are confined to conditions in which the chromatin is soluble. On the other hand, methods usable at high concentrations have failed to produce evidence of an unfolded state at neutral pH, even when the concentrated chromatin solution was first dialysed against solutions of very low ionic strength. This seeming inconsistency can be understood, however, if one considers the concentration of the excess negative charges on the phosphate groups of the DNA in the condensed state, for as a consequence of the Donnan effect, one cannot reduce the sodium ion concentration below the level of charge equivalence without also lowering the pH. We now report the characterisation of a pH-dependent reversible transition of chromatin to an unfolded form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kornberg, R. D. A. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  2. Felsenfeld, G. Nature 271, 115–122 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Lilley, D. M. J. Cell Biol. Int. Rep. 2, 1–10 (1978).

    Article  CAS  Google Scholar 

  4. Tsanev, R. & Petrov, P. J. microsc. Biol. Cell 27, 11–18 (1976).

    Google Scholar 

  5. Oudet, P., Spadafora, C. & Chambon, P. Cold Spring Harb. Symp. quant. Biol. 42, 301–312 (1977).

    Article  Google Scholar 

  6. Gordon, V. C., Knobler, C. M., Olins, D. E. & Schumaker, V. N. Proc. natn. Acad. Sci. U.S.A. 75, 660–663 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Chipev, C. & Staynov, D. Z. Biopolymers 17, 957–968 (1978).

    Article  CAS  Google Scholar 

  8. Venkov, C., Chipev, C., Katarova, Z. & Staynov, D. Z. (in preparation).

  9. Spencer, M. & Staynov, D. Z. (in preparation).

  10. Bradbury, E. M. et al. in The Molecular Biology of the Mammalian Genetic Apparatus (ed. Ts'o, P. O. P.) 53–70 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  11. Richards, B. M. et al. in Current Chromosome Research (eds Jones, K. & Brandham, P. E.) 7–16 (North-Holland, Amsterdam, 1976).

    Google Scholar 

  12. Carlson, R. D. & Olins, D. E. Nucleic Acids Res. 3, 89–100 (1976).

    Article  CAS  Google Scholar 

  13. Subirana, J. A. & Martínez, A. B. Nucleic Acids Res. 3, 3025–3042 (1976).

    Article  CAS  Google Scholar 

  14. Finch, J. T. et al. Nature 269, 29–36 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Finch, J. T. & Klug, A. Cold Spring Harb. Symp. quant. Biol. 42, 1–9 (1977).

    Article  Google Scholar 

  16. Pardon, J. F. et al. Nucleic Acids Res. 4, 3199–3214 (1977).

    Article  CAS  Google Scholar 

  17. Suau, P., Kneale, G. G., Braddock, G. W., Baldwin, J. P. & Bradbury, E. M. Nucleic Acids Res. 4, 3769–3786 (1977).

    Article  CAS  Google Scholar 

  18. Subirana, J. A. et al. in The Molecular Biology of the Mammalian Genetic Apparatus (ed. Ts'o, P. O. P.) 71–92 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  19. Luzzati, V. & Nicolaieff, A. J. molec. Biol. 1, 127–133 (1959).

    Article  CAS  Google Scholar 

  20. Luzzati, V. & Nicolaieff, A. J. molec. Biol. 7, 142–163 (1963).

    Article  CAS  Google Scholar 

  21. Bradbury, E. M., Molgaard, H. V., Stephens, R. M., Bolund, L. A. & Johns, E. W. Eur. J. Biochem. 31, 474–482 (1972).

    Article  CAS  Google Scholar 

  22. Bradbury, E. M. et al. Brookhaven Symp. Biol. 27, (IV) 97–117 (1975).

    Google Scholar 

  23. Pardon, J. F., Wilkins, M. H. F. & Richards, B. M. Nature 215, 508–509 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Pardon, J. F., Richards, B. M. & Cotter, R. I. Cold Spring Harb. Symp. quant. Biol. 38, 75–81 (1973).

    Article  Google Scholar 

  25. Zama, M., Olins, D. E., Prescott, B. & Thomas, G. J. Nucleic Acids Res. 5, 3881–3897 (1978).

    Article  CAS  Google Scholar 

  26. Gould, H. J., Maryanka, D., Fey, S. J., Cowling, G. J. & Allan, J. Meth. Cell Biol. 19, 387–422 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STAYNOV, D., SPENCER, M., ALLAN, J. et al. A reversible conformational transition in chromatin. Nature 279, 263–265 (1979). https://doi.org/10.1038/279263a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/279263a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing