Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium-dependent regulation of protein synthesis and degradation in muscle

Abstract

MUSCLE proteins undergo continuous intracellular turnover as do proteins in other cells1,2. Furthermore, hormones, nutrients and work load can alter rates of protein synthesis and degradation in muscle, resulting in growth or atrophy of these tissues1,2. In hereditary muscular dystrophies, where there is prominent wasting of the affected tissues, rates of both total protein synthesis and degradation are elevated3–10. The immediate cause of this muscle atrophy is the imbalance resulting from an increase in protein degradation which exceeds a smaller enhancement in average protein synthesis. No simple explanation based on a defect in the response of dystrophic cells to known hormonal or nutritional factors has satisfactorily explained the elevation in the rates of both protein synthesis and degradation. We have now investigated the possible role of increased cellular Ca2+ as a mediator of such changes in protein metabolism based on other known structural and biochemical alterations in dystrophic muscles11,12. Lesion(s) involving membranes in muscle as well as other cells occur in hereditary dystrophies, including the main human form, Duchenne dystrophy11,12. One characteristic of the dystrophic plasma membrane seems to be an increased permeability to the high concentrations of Ca2+ normally present in extracellular fluid11,12. In addition, studies have suggested a decreased ability of sarcoplasmic reticulum to sequester Ca2+ in dystrophic muscles13,14. Thus, it is possible that increased Ca2+ might be responsible for the stimulation of both protein synthesis and degradation which occurs in these muscles. To test this idea, we have experimentally increased the uptake of external Ca2+ into rat muscles by using the divalent cation ionophore, A23187. The ability of this ionophore to increase the transport of Ca2+ across membranes has resulted in its application as a widely used tool for the study of many Ca2+-dependent cellular processes15. The experiments reported here demonstrate that increased movement of Ca2+ into muscle can produce effects which closely resemble dystrophic muscle and that the increased net catabolism can be reversed by certain factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldberg, A. L. & St John, A. C. A. Rev. Biochem. 45, 747–803 (1976).

    Article  CAS  Google Scholar 

  2. Goldberg, A. L., Etlinger, J. D., Goldspink, D. F. & Jablecki, C. Med. Sci. Sports 7, 248–261 (1975).

    CAS  Google Scholar 

  3. Simon, E. J., Gross, C. S. & Lessell, I. M. Archs Biochem. Biophys. 96, 41–46 (1962).

    Article  CAS  Google Scholar 

  4. Weinstock, I. M., Soh, T. S., Freedman, H. A. & Cutler, M. E. Biochem. Med. 2, 345–356 (1969).

    Article  CAS  Google Scholar 

  5. Strivastava, U. Can. J. Biochem. 46, 35–41 (1968).

    Article  Google Scholar 

  6. Rourke, A. W. J. cell. Physiol. 86, 343–352 (1975).

    Article  CAS  Google Scholar 

  7. Goldberg, A. L., Griffin, G. E. & Dice, J. F. in Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L. P.) 376–385 (Excerpta Medica, Amsterdam, 1977).

    Google Scholar 

  8. Battelle, B. & Florini, J. R. Biochemistry 12, 635–643 (1973).

    Article  CAS  Google Scholar 

  9. Kruh, J., Dreyfus, J., Schapira, G. & Gey, G. O. J. clin. Invest. 39, 1180–1188 (1960).

    Article  CAS  Google Scholar 

  10. Ionascescu, V., Zellweger, H. & Conway, T. W. Archs Biochem. Biophys. 144, 51–58 (1971).

    Article  Google Scholar 

  11. Engel, W. K. in Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L. P.) 277–309 (Excerpta Medica, Amsterdam, 1977).

    Google Scholar 

  12. Engel, A. G., Mokri, B., Jerusalem, F., Sakakibara, H. & Paulson, O. B. in Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L. P.) 310–324 (Excerpta Medica, Amsterdam, 1977).

    Google Scholar 

  13. Takagi, A., Schotland, D. L. & Rowland, L. P. Archs Neurol. 28, 380–388 (1973).

    Article  CAS  Google Scholar 

  14. Samaha, F. J. in Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L. P.) 633–639 (Excerpta Medica, Amsterdam, 1977).

    Google Scholar 

  15. Rasmussen, H. & Goodman, D. Physiol. Rev. 57, 421–510 (1977).

    Article  CAS  Google Scholar 

  16. Fulks, R. M., Li, J. B. & Goldberg, A. L. J. biol. Chem. 250, 290–298 (1975).

    CAS  PubMed  Google Scholar 

  17. Li, J. B. & Goldberg, A. L. Am. J. Physiol. 231, 441–448 (1976).

    CAS  PubMed  Google Scholar 

  18. McKee, E. E., Cheung, J. Y., Rannels, D. E. & Morgan, H. E. J. biol. Chem. 253, 1030–1040 (1978).

    CAS  PubMed  Google Scholar 

  19. Stracher, A., McGowan, E. B. & Shafiq, S. A. Science 250, 50–53 (1978); McGowan, E. B., Shafiq, S. A. & Stracher, A. Expl Neurol. 50, 649–657 (1976).

    Article  ADS  Google Scholar 

  20. Libby, P. & Goldberg, A. L. Science 199, 534–536 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Van der Westhuyzen, D. R., Matsumoto, K. & Etlinger, J. D. J. Cell Biol. 79, 325a (1978).

    Google Scholar 

  22. Buresora, M., Gutmann, E. & Klicpera, M. Experientia 25, 144–145 (1969).

    Article  Google Scholar 

  23. Kendrick-Jones, J. & Perry, S. V. Nature 213, 406–408 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Goldspink, D. F. Biochem. J. 174, 595–602 (1978).

    Article  CAS  Google Scholar 

  25. Goldberg, A. L., Jablecki, M. & Li, J. B., Ann. N.Y. Acad. Sci. 228, 190–201 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Brevet, A., Pinto, E., Peacock, J. & Stockdale, F. E. Science 193, 1152–1154 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Walker, G. & Strohman, R. Expl Cell Res. 116, 341–349 (1978).

    Article  CAS  Google Scholar 

  28. Grinstein, S. & Erlij, D. J. Membrane Biol. 29, 313–328 (1976).

    Article  CAS  Google Scholar 

  29. Ridgway, E. B. & Gordon, A. M. Science 189, 881–884 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Etlinger, J. D. & Goldberg, A. L. Proc. natn. Acad. Sci. U.S.A. 74, 54–58 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Reddy, M. K., Etlinger, J. D., Rabinowitz, M., Fischman, D. A. & Zak, R. J. biol. Chem. 250, 4278–4284 (1975).

    CAS  PubMed  Google Scholar 

  32. Dayton, W. R., Reville, W. J., Goll, D. E. & Stromer, M. H. Biochemistry 15, 2159–2167 (1976).

    Article  CAS  Google Scholar 

  33. Kar, N. C. & Pearson, C. M. Muscle Nerve 1, 308–313 (1978).

    Article  CAS  Google Scholar 

  34. Statham, H. E., Duncan, C. J. & Smith, J. L. Cell Tissue Res. 173, 193–209 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KAMEYAMA, T., ETLINGER, J. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature 279, 344–346 (1979). https://doi.org/10.1038/279344a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/279344a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing