Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Percolative conduction in microemulsion type systems

Abstract

In the presence of a suitable combination of surfactants (an alkaline metal soap and a medium chain length alcohol, for example), water and oil type organic liquids can form transparent compounds of low viscosity that have been labelled “microemulsions”, with little or no mechanical agitation (spontaneous emulsification) (refs 1–3). Depending on the chemical nature of the surface active agents and the relative constituent proportions, water-in-oil (w/o) or oil-in-water (o/w) systems can be obtained. (Because of the similarity between tertiary solutions of inverted micelles and w/o microemulsions, the term ‘inverted micellar solutions’ has also been suggested4–7.) Microemulsions have been investigated by many scientists interested in liquid state and surface physicochemistry and by many technologists foreseeing numerous applications in industry8,9. It has been suggested9–13 that conductivity and permittivity studies could provide, along with other techniques, valuable information about the structure and phase behaviour of microemulsions which are considered to consist of dispersions between a few tens and a few hundreds of angströms in diameter globules made up of an inner spherical core surrounded by a concentric shell of mixed surfactant and cosurfactant1–10. The experiments reported here show that the conductive behaviour of certain microemulsion systems can be accounted for using the percolation and effective-medium theories14–16 that have depicted transport properties and continuous metal–non-metal transitions in disordered materials with microscopic inhomogeneities associated with, for example, density, composition15 or bonding configuration17 fluctuations. This result, which could help in understanding the structural behaviour of micro-emulsions, is considered in connection with the postulated existence in liquid systems of equilibrium bicontinuous structures, a state described by Scriven18 as ‘related to ordinary liquids as porous media are to homogeneous solids’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoar, T. P. & Schulman, J. H. Nature 152, 102–103 (1943).

    Article  ADS  CAS  Google Scholar 

  2. Prince, L. M. in Emulsions and Emulsion Technology (ed. Lissant K. J.) 125–177 (Dekker, New York, 1974); Microemulsions, Theory and Practice (Academic, New York, 1977).

    Google Scholar 

  3. Mittal, K. L. Micellization, Solubilization and Microemulsions (Plenum, New York, 1977).

    Google Scholar 

  4. Adamson, A. W. J. Colloïd Interface Sci. 29, 261–267 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Ekwall, P., Mandell, L. & Fontell, K. J. Colloïd Interface Sci. 33, 215–235 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Friberg, S. & Burasczenska, I. Prog. Colloïd Polymer Sci. 63 1–9.

  7. Sjöblom, E. & Friberg, S. J. Colloïd Interface Sci. 67, 16–30 (1978).

    Article  ADS  Google Scholar 

  8. Friberg, S. Infs Chim. 148, 235–238 (1975); Chemtech 6, 124–127 (1976).

    CAS  Google Scholar 

  9. Shah, D. O. & Schechter, R. S. Improved Oil Recovery by Surfactant and Polymer Flooding (Academic, New York, 1977).

    Google Scholar 

  10. Shah, D. O. & Hamlin, R. M. Science 171, 483–485 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Clausse, M., Sheppard, R. J., Boned, C. & Essex, C. G. in Colloïd Interface Science Vol. 2 (ed. Kerker, M.) 233–234 (Academic, New York, 1976).

    Book  Google Scholar 

  12. Peyrelasse, J., Boned, C., Xans, P. & Clausse, M. in Emulsions, Latices and Dispersions (eds Becher, P. & Yudenfreund, M. N.) 221–236 (Dekker, New York, 1978).

    Google Scholar 

  13. Clausse, M. in Encyclopedia of Emulsion Technology (ed. Becher, P.) (Dekker, New York, in the press).

  14. Kirkpatrick, S. Phys. Rev. Lett. 27, 1722–1725 (1971); Rev. mod. Phys. 45, 574–588 (1973).

    Article  ADS  Google Scholar 

  15. Cohen, M. H. & Jortner, J. Phys. Rev. Lett. 30, 696–698 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Webman, I., Jortner, J. & Cohen, M. H. Phys. Rev. B11, 2885–2892 (1975).

    Article  ADS  Google Scholar 

  17. Cabane, B. & Friedel, J. J. Phys., Fr. 32, 73–84 (1971).

    Article  CAS  Google Scholar 

  18. Scriven, L. E. Nature 263, 123–125 (1976); in Micellization, Solubilization and Microemulsions Vol. 2 (ed. Mittal, K. L.) 877–893 (Plenum, New York, 1977).

    Google Scholar 

  19. Lagües, M., Ober, R. & Taupin, C. J. Phys. Lett., Fr. 39, L487–491 (1978).

    Article  Google Scholar 

  20. Bruggeman, D. A. G. Ann. Phys. 24, 636–679 (1935).

    Article  CAS  Google Scholar 

  21. Bottcher, C. J. F. Rec. Trav. Chim. 64, 47–51 (1945).

    Article  CAS  Google Scholar 

  22. Landauer, R. J. appl. Phys. 23, 779–784 (1952).

    Article  ADS  CAS  Google Scholar 

  23. Dvolaitzky, M. et al. J. Chem. Phys. 69, 3279–3288 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Peyrelasse, J., McClean, V. E. R., Boned, C., Sheppard, R. J. & Clausse, M. J. Phys. D: Appl. Phys. 11, L117–121 (1978).

    Article  CAS  Google Scholar 

  25. Talmon, Y. & Prager, S. Nature 267, 333–335 (1977); J. chem. Phys. 69, 2984–2991 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagourette, B., Peyrelasse, J., Boned, C. et al. Percolative conduction in microemulsion type systems. Nature 281, 60–62 (1979). https://doi.org/10.1038/281060b0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/281060b0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing