Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immunity to human haematopoietic stem cells

Abstract

Graft rejection is an important problem in human bone marrow transplantation, with a 25–60% incidence in grafts between HLA–identical siblings1–6. In mice, two models of rejection of bone marrow grafts have been described: T-lymphocyte-mediated immunity and hybrid resistance (for reviews see refs 7, 8). The first model involves the recognition of foreign histo-compatibility (H–2) antigens by selected subsets of T lymphocytes. These antigen-reactive cells undergo clonal expansion and differentiate into cytotoxic effector cells which mediate graft rejection. In the hybrid resistance model, mononuclear cells, probably identical to natural killer (NK) cells, react against haematopoietic histocompatibility antigens on parental marrow cells9. Cells involved in hybrid resistance exhibit ‘spontaneous’ cytotoxicity to disparate haematopoietic cells and, in contrast to T-lymphocyte-mediated immunity, do not require a sensitisation phase before differentiating into cytotoxic effector cells. The mechanism of graft rejection following bone marrow transplantation in man is unknown. In transplants between HLA-identical siblings the target antigens of graft rejection are not HLA or antigens closely linked to the major histocompatibility complex (MHC). To study the problem of graft rejection in man we developed and describe here an in vitro model to detect immunity to haematopoietic stem cells committed to granulocyte–macrophage differentiation (CFU-C; colony-forming unit culture). We found that human peripheral blood and bone marrow but not thymus contain a population of cells which are cytotoxic to haematopoietic stem cells following in vitro sensitisation. The effector cell population is not a conventional T or B lymphocyte, monocyte–macrophage or NK cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. UCLA Bone Marrow Transplant Team Lancet ii, 921 (1976).

  2. Storb, R. et al. Transplantn Proc. 10, 135 (1978).

    CAS  Google Scholar 

  3. Gluckman, F. et al. Transplantn Proc. 10, 141 (1978).

    CAS  Google Scholar 

  4. Elfenbein, G. H., Anderson, P. N., Klein, D. L., Schacter, D. Z. & Santos, G. W. Transplantn Proc. 10, 441 (1978).

    CAS  Google Scholar 

  5. ACS/NIH Bone Marrow Transplant Registry J. Am. med. Ass. 236, 1131 (1976).

  6. Camitta, B. M. et al. Blood 48, 63 (1976).

    CAS  PubMed  Google Scholar 

  7. Cerrottini, J. C. & Brunner, K. T. Adv. Immun. 18, 67 (1974).

    Article  Google Scholar 

  8. Cudkowicz, G., Landy, M. & Shearer, G. M., (eds) Natural Resistance Systems Against Foreign Cells, Tumors, and Microbes (Academic, New York, 1978).

  9. Kiessling, R. et al. Eur. J. Immun. 7, 655 (1977).

    Article  CAS  Google Scholar 

  10. Golde, D. W. & Cline, M. J. Blood 41, 45 (1973).

    CAS  PubMed  Google Scholar 

  11. Pike, B. L. & Robinson, W. A. J. cell. Physiol. 76, 77 (1970).

    Article  CAS  Google Scholar 

  12. Cline, M. J. & Billing, R. J. exp. Med. 146, 1143 (1977).

    Article  CAS  Google Scholar 

  13. Winchester, R. J. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4102 (1977).

    Article  Google Scholar 

  14. Billings, R. J., Honig, R., Peterson, P., Safani, M. & Terasaki, P. J. Immun. 117, 2040 (1976).

    Google Scholar 

  15. Mann, D. L., Abelson, L., Henkart, P., Harris, S. D. & Amos, D. B. Proc. natn. Acad. Sci. U.S.A. 72, 5103 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Golde, D. W. & Cline, M. J. J. clin. Invest. 51, 2981 (1972).

    Article  CAS  Google Scholar 

  17. Saxon, A., Feldhous, J. & Robins, R. A. J. immun. Meth. 12, 285 (1976).

    Article  CAS  Google Scholar 

  18. Billing, R., et al. J. exp. Med. 144, 167 (1976).

    Article  CAS  Google Scholar 

  19. Billing, R., Ting, A. & Terasaki, P. J. natn. Cancer Inst. 58, 199 (1977).

    Article  CAS  Google Scholar 

  20. Takasugi, M., Mickey, M. R. & Terasaki, P. I. Cancer Res. 33, 2898 (1973).

    CAS  PubMed  Google Scholar 

  21. Takasugi, M., Mickey, M. R. & Terasaki, P. I. J. natn. Cancer Inst. 53, 1527 (1974).

    CAS  Google Scholar 

  22. Targan, S. & Jondal, M. J. immun. Meth. 22, 123 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, R., Moran, C. Immunity to human haematopoietic stem cells. Nature 281, 220–222 (1979). https://doi.org/10.1038/281220a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/281220a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing