Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is adenosine the mediator of opiate action on neuronal firing rate?

Abstract

Despite recent advances1,2, relatively little is known of the mechanism of action of opiate analgesics at the cellular level. There is evidence, however, that the inhibition of neurotransmitter release produced by morphine may be mediated by the initial release of adenosine3–5; the effect is mimicked by adenosine and the actions of both adenosine and morphine are blocked by theophylline and enhanced by dipyridamole3–5. When applied microiontophoretically, adenosine has also been shown to be a potent depressant of the firing rate of single neurones in the mammalian brain, and a similar depressant effect of morphine has been claimed to be stereospecific, antagonised by naloxone6–9 and greatly reduced in animals made tolerant to, and dependent on, morphine8,9. The experiments described here examine the effect of aminophylline, a soluble theophylline derivative, on these depressant effects. We have found that aminophylline will block responses to both morphine and adenosine, suggesting that the depressant responses to morphine may also be mediated by the local release of adenosine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kosterlitz, H. W. (ed.) Opiates and Endogenous Opioid Peptides (North-Holland, Amsterdam, 1976).

  2. Hughes, J. (ed). Centrally Acting Peptides (Macmillan, London, 1978).

    Google Scholar 

  3. Gintzler, A. R. & Musacchio, J. M. J. Pharmac. exp. Ther. 194, 575–582 (1975).

    CAS  Google Scholar 

  4. Jhamandas, K., Sawynok, J. & Sutak, M. Eur. J. Pharmac. 49, 309–312 (1978).

    Article  CAS  Google Scholar 

  5. Sawynok, J. & Jhamandas, K. H. J. Pharmac. exp. Ther. 197, 379–390 (1976).

    CAS  Google Scholar 

  6. Bradley, P. B., Briggs, I., Gayton, R. J. & Lambert, R. A. Nature 261, 425–426 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Young, W. S., Bird, S. J. & Kuhar, M. J. Brain Res. 129, 366–370 (1977).

    Article  CAS  Google Scholar 

  8. Satoh, M., Zieglgänsberger, W., Fries, W. & Herz, A. Brain Res. 82, 378–382 (1974).

    Article  CAS  Google Scholar 

  9. Zieglgänsberger, W., Fry, J. P., Herz, A., Moroder, L. & Wunsch, E. Brain Res. 115, 160–164 (1976).

    Article  Google Scholar 

  10. DeGroot, T. Trans. R. Neth. Acad. Sci. 52, 1–40 (1959).

    Google Scholar 

  11. Stone, T. W. J. Physiol., Lond. 233, 211–225 (1973).

    Article  CAS  Google Scholar 

  12. Stone, T. W. & Taylor, D. A. J. Physiol., Lond. 266, 523–543 (1977).

    Article  CAS  Google Scholar 

  13. Pert, C. B. & Snyder, S. H. Science 179, 1011–1014 (1976).

    Article  ADS  Google Scholar 

  14. Goldstein, A. Life Sci. 14, 615 (1974).

    Article  CAS  Google Scholar 

  15. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Phillis, J. W., Kostopoulos, G. K. & Limacher, J. J. Can. J. Physiol. Pharmac. 52, 1226–1229 (1974).

    Article  CAS  Google Scholar 

  17. Kostopoulos, G. K. & Phillis, J. W. Expl Neurol. 55, 719–724 (1977).

    Article  CAS  Google Scholar 

  18. Taylor, D. A. & Stone, T. W. Experientia 34, 481–482 (1978).

    Article  CAS  Google Scholar 

  19. Stone, T. W. Biochem. Soc. Trans. 6, 858–862 (1978).

    Article  CAS  Google Scholar 

  20. Sattin, A. & Rall, T. W. Molec. Pharmac. 6, 13–23 (1970).

    CAS  Google Scholar 

  21. Blume, A. J., Dalton, C. & Sheppard, H. Proc. natn. Acad. Sci. U.S.A. 70, 3099–3102 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Green, R. D. & Stanberry, L. R. Biochem. Pharmac. 26, 37–43 (1977).

    Article  CAS  Google Scholar 

  23. Fredholm, B. B. & Vernet, L. Acta. physiol. scand. 104, 502–504 (1978).

    Article  CAS  Google Scholar 

  24. Edstrom, J. P. & Phillis, J. W. Can. J. Physiol. Pharmac. 54, 787–790 (1976).

    Article  CAS  Google Scholar 

  25. Zieglgänsberger, W. & Puil, E. A. Expl Brain Res. 17, 35–49 (1973).

    Article  Google Scholar 

  26. Ho, I. K., Loh, H. H. & Leong Way, E. J. Pharmac. exp. Ther. 185, 336–346 (1973).

    CAS  Google Scholar 

  27. Ally, A. I. et al. Prostaglandins 14, 109–118 (1977).

    Article  CAS  Google Scholar 

  28. Karmali, R. A. et al. Res. Commun chem. Path. Pharmac. 19, 181–184 (1978).

    CAS  Google Scholar 

  29. Collier, H. O. J. & Roy, A. C. Nature 248, 24–27 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Havemann, U. & Kuschinsky, K. Archs pharmac. 302, 103–106 (1978).

    Article  CAS  Google Scholar 

  31. Collier, H. O.J., Francis, D. L. & Roy, A. C. Adv. Biochem. Psychopharmac. 15, 337–345 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, T., Perkins, M. Is adenosine the mediator of opiate action on neuronal firing rate?. Nature 281, 227–228 (1979). https://doi.org/10.1038/281227a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/281227a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing