Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An IgG primary sequence exposure theory for complement activation using synthetic peptides

Abstract

To establish the mechanism by which IgG, aggregating with antigen1, triggers the first complement component2 (the C1q·C1r·C1s complex), it is important to distinguish the potential sites on the Fc region which may be involved in the interaction. Several studies have implicated the CH2 region of IgG3–5. C1 binds weakly to monomeric IgG but strongly to aggregated IgG6,7, and an analytical ultracentrifugation study of the binding of different IgG subclasses to the C1q subunit suggested that each C1q molecule may have from 12 to 18 receptor sites for immunoglobulin8. Although there are conflicting reports of conformational changes in antibody molecules induced by antigens9–11, electron microscopic studies of rabbit IgG antibody12 have shown that reduction of a single disulphide bond between the heavy chains in the hinge region allows this immunoglobulin, on contact with its antigen, to undergo strain-release conformational changes in the Fc region, suggesting a potential energy release and perhaps exposure of a cryptic site. Chemical modification of the tryptophanyl residues of both rabbit and human IgG or their Fc fragments has been shown to reduce then-C1-fixing potentials13,14. These findings, together with examination of crystallographic structural data15 and amino acid sequence analyses16,17 of the CH2 region of human IgG1, support the possibility that a tryptophanyl residue in position 277 on human IgG (near the hinge region) could be in or near a site involved in the reaction with C1q. To explore this possibility, we have synthesised a series of small peptides resembling the portion of the CH2 region around the tryptophanyl residue at 277 (Table 1). A series of C1 consumption, C2 destruction, and C3 conversion tests was used to determine the most effective sequence for complement activation and to gain information about the functional nature of the interactions between the peptides and the human complement system. On the basis of these experiments we suggest that the primary structure of a small peptide segment is necessary for effective C1 binding and activation and that conformational changes caused by the reaction of IgG molecules with antigens, by heat aggregation, or by interfacial forces18 may expose this cryptic biologically active sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waldesbuhl, M., Allen, R., Meylen, A. & Isliker, H. Immunochemistry 7, 185–197 (1970).

    Article  CAS  Google Scholar 

  2. Knobel, H. R., Heusser, C., Rodrick, M. L. & Isliker, H. J. Immun. 112, 2094–2101 (1974).

    CAS  PubMed  Google Scholar 

  3. Connell, G. E. & Porter, R. R. Biochem. J. 124, 53P (1971).

    Article  CAS  Google Scholar 

  4. Colomb, M. & Porter, R. R. Biochem. J. 145, 177–183 (1975).

    Article  CAS  Google Scholar 

  5. Ellerson, J. R., Yasmeen, D., Painter, R. H. & Dorrington, K. J. FEBS Lett. 24, 318–322 (1972).

    Article  CAS  Google Scholar 

  6. Ishizaka, T., Ishizaka, K., Salmon, S. & Fudenberg, H. H. J. Immun. 99, 82–88 (1967).

    CAS  PubMed  Google Scholar 

  7. Augener, W., Grey, H. M., Cooper, N. R. & Müller-Eberhard, H. J. Immunochemistry 8, 1011–1020 (1971).

    Article  CAS  Google Scholar 

  8. Schumaker, V. N., Calcott, M. A., Spiegelberg, H. L. & Müller-Eberhard, H. J. Biochemistry 15, 5175–5181 (1976).

    Article  CAS  Google Scholar 

  9. Kelly, K. A., Sehon, A. H. & Froese, A. Immunochemistry 8, 613–615 (1971).

    Article  CAS  Google Scholar 

  10. Metzger, H. Contemp. Topics molec. Immun. 7, 119–152 (1978).

    Article  CAS  Google Scholar 

  11. Young, N. M. & Williams, R. E. Molec. Immun. 16, 145–152 (1979).

    Article  CAS  Google Scholar 

  12. Seegan, G. W., Smith, C. A. & Schumaker, V. N. Proc. natn. Acad. Sci. U.S.A. 76, 907–911 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Allan, R. & Isliker, H. Immunochemistry 11, 175–180 (1974).

    Article  CAS  Google Scholar 

  14. Johnson, B. J. & Thames, K. E. J. Immun. 117, 1491–1494 (1976).

    CAS  PubMed  Google Scholar 

  15. Deisenhofer, J., Colman, P. M., Epp, O. & Huber, R. Hoppe-Seyler's Z. physiol. Chem. 357, 1421–1434 (1976).

    Article  CAS  Google Scholar 

  16. Edelman, G. M. et al. Proc. natn. Acad. Sci. U.S.A. 63, 78–85 (1969).

    Article  ADS  CAS  Google Scholar 

  17. Wang, A. C. & Fudenberg, H. H. Nature 240, 24–26 (1972).

    CAS  Google Scholar 

  18. Boackle, R. J., Pruitt, K. M. & Mestecky, J. Immunochemistry 11, 543–548 (1974).

    Article  CAS  Google Scholar 

  19. Johnson, B. J. & Trask, E. G. J. org. Chem. 33, 4521–4524 (1968).

    Article  CAS  Google Scholar 

  20. Rapp, H. J. & Borsos, T. Molecular Basis of Complement Action, 1–109 (Appleton-Century Crofts, New York, 1970).

    Google Scholar 

  21. Boackle, J. B. Carsgo, E. A. Adv. exp. med. Biol. 107, 411–421 (1978).

    Article  CAS  Google Scholar 

  22. Boackle, R. J., Pruitt, K. M., SUverman, M. S. & Glymph, J. L. Jr J. dent. Res. 57, 103–110 (1978).

    Article  CAS  Google Scholar 

  23. Greenblatt, J., Boackle, R. J. & Schwab, J. H. Infect. Immun. 19, 296–303 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boackle, R., Johnson, B. & Caughman, G. An IgG primary sequence exposure theory for complement activation using synthetic peptides. Nature 282, 742–743 (1979). https://doi.org/10.1038/282742a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/282742a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing