Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell-free synthesis of enterotoxin of E. coli from a cloned gene

Abstract

In a variety of mammalian species including humans the newborn young are particularly susceptible to diarrhoeal disease brought about by toxin-producing strains of the common gut bacterium, Escherichia coli1. Two types of enterotoxin have been described2. The first, heat-labile toxin (LT), sharing partial antigenic identity with cholera toxin2,3 is comprised of two subunits having molecular weights of 25,500 and 11,5004 and, like cholera toxin, stimulates adenyl cyclase activity in the gut5. The second type, heat-stable toxin (ST), is a low-molecular weight protein which is excreted into the medium during the growth of ST-elaborating strains. Unlike LT, ST is poorly antigenic and for this reason the identification of ST-producing strains has relied on an assay involving the intragastric injection of infant mice, a test specific for ST6. Although many strains produce both ST and LT, strains producing ST alone are especially common in E. coli diarrhoeal disease of calves7,8, pigs2 and have also been implicated in outbreaks of diarrhoea in humans9,10. Recent evidence suggests that ST activates guanyl cyclase in the gut11,12 and its molecular weight has been estimated to be 4,400–5,100 (ref. 13). We have now applied gene cloning techniques to the isolation of ST genes from two porcine E. coli isolates and report here the identification of the protein product of molecular weight 7,000, synthesised in an in vitro system directed by the cloned DNA template. This in vitro gene product elicits a typical ST enterotoxin response in the infant mouse assay and is most probably synthesised as a 10,000 molecular weight precursor, as might be expected for an exported protein. The gene cloning data also provide evidence that the ST genes and their surrounding transposon structures are probably identical in both porcine and bovine strains of entero-pathogenic E. coli.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Sack, R. B. A. Rev. Microbiol. 29, 333–353 (1975).

    Article  CAS  Google Scholar 

  2. Gyles, C. L. Ann. N.Y. Acad. Sci. 176, 314–322 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Smith, N. & Sack, R. B. J. infect. Dis. 127, 164–170 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Dallas, W. S. & Falkow, S. Nature 277, 406–407 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Evans, D. J., Chen, L. C., Curlin, G. T. & Evans, D. G. Nature new Biol. 236, 137–138 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Dean, A. G., Ching, Y.-C., Williams, R. C. & Harden, L. B. J. infect. Dis. 125, 407–411

  7. Sivaswamy, G. & Gyles, C. L. Can. J. comp. Med. 40, 241–246 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaeckenbeek, A., Schoenaers, F., Pastoret, P. P. & Josse, M. Ann. Med. Vet. 121, 55–57 (1977).

    Google Scholar 

  9. Ryder, H. W. et al. New Engl. J. Med. 295, 849–853 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Kudoh, Y., Zen-Yoji, H., Matsushita, S., Sakai, S. & Maruyama, T. Microbiol. Immun. 21, 175–178 (1977).

    Article  CAS  Google Scholar 

  11. Hughes, J. M., Murad, F., Chang, B. & Guerrant, R. L. Nature 271, 755–756 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Field, M., Graf, L. H., Laird, W. J. & Smith, P. L. Proc. natn. Acad. Sci. U.S.A. 75, 2800–2804 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Alderete, J. F. & Robertson, D. C. Infect. Immun. 19, 1021–1030 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, H. W. & Halls, S. J. gen. Microbiol. 52, 319–334 (1968).

    Article  Google Scholar 

  15. Gyles, C. L., So, M. & Falkow, S. J. infect. Dis. 130, 40–49 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, H. W. Soc. appl. Bact. Symp. 227–242 (1976).

  17. So, M., Heffron, F. & McCarthy, B. J. Nature 277, 453–456 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Harford, N. et al. (in preparation).

  19. Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Fuchs, E. Eur. J. Biochem. 63, 15–22 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Blobel, G. & Dobberstein, B. J. Cell. Biol. 67, 835–851 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Sarvas, M. et al. (in preparation).

  24. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lathe, R., Hirth, P., Wilde, M. et al. Cell-free synthesis of enterotoxin of E. coli from a cloned gene. Nature 284, 473–474 (1980). https://doi.org/10.1038/284473a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/284473a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing