Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

E. coli RNA polymerase promoters on superhelical SV40 DNA are highly selective targets for chemical modification

Abstract

Supercoiled DNAs are required or preferred in a number of biological processes such as repair and transcription. This requirement may be due to special properties which are present in supercoiled (FI) DNAs but not in the corresponding allomorphic forms. If sufficiently supercoiled, FI DNAs seem to contain single-stranded regions that are accessible to single-strand specific reagents and endonuclease1–3. The free energy associated with super helix formation may also be used to drive ligand–DNA or protein–DNA interactions3–7. In vitro studies have shown that superhelical DNA is a better template for transcription than its corresponding allomorphic forms8–15, and this is due probably to a change in the initial binding affinity of the RNA polymerase at promoter sites15–18. Previous work in our laboratory has suggested that the single-strand specific probe N-cyclohexyl-N′-β-(4-methylmorpholinium) ethyl carbodiimide (CMC), which almost totally inhibits transcription of SV40 and PM2 DNA14,18, is acting preferentially at promotor sites18–20. We report here experiments to determine the selectivity of CMC for promoters on superhelical SV40 DNA. After limited reaction with CMC there was substantially less Escherichia coli RNA polymerase bound to reacted SV40 DNA than to the unmodified DNA. Marked inhibition of transcription from the modified DNA demonstrated that CMC is highly selective for E. coli RNA polymerase promotors in superhelical DNA, suggesting that the introduction of superhelical turns may alter the parameters by which the enzyme interacts with DNA through promotor recognition and opening of the DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lebowitz, J., Chaudhuri, A. K., Gonenne, A. & Kitos, G. Nucleic. Acids Res. 4, 1695–1712 (1977).

    Article  CAS  Google Scholar 

  2. Pritchard, A. E., Kowalski, D. & Laskowski, M. J. biol. chem. 252, 8652–8659 (1977).

    CAS  PubMed  Google Scholar 

  3. Bauer, W. R. A. Rev Biophys. Bioengng. 7, 287–331 (1978).

    Article  CAS  Google Scholar 

  4. Bauer, W. R. & Vinograd, J. J. molec. Biol. 47, 419–435 (1970).

    Article  CAS  Google Scholar 

  5. Davidson, J. J. molec. Biol. 66, 307–309 (1972).

    Article  CAS  Google Scholar 

  6. Hsieh, T.-S. & Wang, J. C. Biochemistry 14, 527–535 (1975).

    Article  CAS  Google Scholar 

  7. Bauer, W. R. & Vinograd, J. in Basic Principles of Nucleic Acid Chemistry Vol. 2 (eds Cantoni, G. L. & Davies D. R.) 265–303 (Academic, New York, 1974).

    Book  Google Scholar 

  8. Hayashi, Y. & Hayashi, M. Biochemistry 10, 4212–4218 (1971).

    Article  CAS  Google Scholar 

  9. Botchan, P., Wang, J. C. & Echols, H. Proc. natn. Acad. Sci. U.S.A. 70, 3077–3081 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Wang, J. C. J. molec. Biol. 89, 783–801 (1974).

    Article  CAS  Google Scholar 

  11. Richardson, J. P. Biochemistry 13, 3164–3169 (1974).

    Article  CAS  Google Scholar 

  12. Zimmer, S. G. & Millett, R. L. Biochemistry 14, 300–306 (1975).

    Article  CAS  Google Scholar 

  13. Mandel, J. L. & Chambon, P. Eur. J. Biochem. 42, 367–378 (1974).

    Article  Google Scholar 

  14. Flashner, M. S., Katopes, M. A. & Lebowitz, J. Nucleic. Acids Res. 4, 1713–1726 (1977).

    Article  CAS  Google Scholar 

  15. Hale, P. & Lebowitz, J. J. Virol. 25, 298–304 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Richardson, J. P. J. molec. Biol. 91, 477–487 (1975).

    Article  CAS  Google Scholar 

  17. Botchan, P. J. molec. Biol. 105, 161–176 (1976).

    Article  CAS  Google Scholar 

  18. Hale, P. & Lebowitz, J. J. Virol. 25, 305–311 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, M., Lebowitz, J. & Salzman, N. P. J. Virol. 18, 211–217 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lebowitz, P., Stern, R., Ghosh, P. K. & Weissman, S. M. J. Virol. 22, 430–445 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lebowitz, J., Garon, C. F., Chen, M. & Salzman, N. P. J. Virol. 18, 205–210 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bauer, W. & Vinograd, J. Ann. N. Y. Acad. Sci. 164, 192–225 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Wells, R. D. et al. CRC Crit. Rev. Biochem. 4, 305–340 (1977).

    Article  CAS  Google Scholar 

  24. Selsing, E., Wells, R. D., Alden, C. J. & Arnott, S. J. biol. Chem. 254, 5417–5422 (1979).

    CAS  PubMed  Google Scholar 

  25. Shishido, K. Agric. biol. Chem. 43, 1093–1102 (1979).

    CAS  Google Scholar 

  26. Gilbert, W. in RNA Polymerase (eds Losick, R. & Chamberlin, M.) 193–205 (Cold Spring Harbor Lab. Mongr. Ser., 1976).

    Google Scholar 

  27. Mulder, C. & Delius, H. Proc. natn. Acad. Sci. U.S.A. 69, 3215–3219 (1970).

    Article  ADS  Google Scholar 

  28. Yang, H.-L., Heller, K., Gelbert, M. & Zubay, G. Proc. natn. Acad. Sci. U.S.A. 76, 3304–3308 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Prives, C., Gilboa, E., Revel, M. & Winocour, E. Proc. natn. Acad. Sci. U.S.A. 74, 457–461 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Paucha, E., Harvey, R. & Smith, A. E. J. Virol. 28, 154–170 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts, B. E. et al. Proc. natn. Acad. Sci. U.S.A. 72, 1922–1926 (1975).

    Article  ADS  CAS  Google Scholar 

  32. Greenblatt, J. F., Allet, B., Weil, R. & Ahmed-Zadeh, C. J. molec. Biol. 108, 361–379 (1976).

    Article  CAS  Google Scholar 

  33. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  34. Reddy, V. B., Ghosh, P. K., Lebowitz, P. & Weissman, S. M. Nucleic Acids Res. 5, 4195–4213 (1978).

    Article  CAS  Google Scholar 

  35. Dhar, R., Weissman, S. M., Zain, B. S., Pan, J. & Lewis, A. M., Nucleic Acids Res. 1, 595–614 (1974).

    Article  CAS  Google Scholar 

  36. Scherer, G. E. F., Walkinshaw, M. D. & Arnott, S. Nucleic Acids Res. 5, 3759–3773 (1978).

    Article  CAS  Google Scholar 

  37. Lescure, B., Chestier, A. & Yaniv, M. J. molec. Biol. 124, 73–85 (1978).

    Article  CAS  Google Scholar 

  38. Lescure, B., Dauguet, C. & Yaniv, M. J. molec. Biol. 124, 87–95 (1978).

    Article  CAS  Google Scholar 

  39. DeLorbe, W. J. thesis, Univ. Iowa (1978).

  40. Gonzalez, N., Wigg, J. & Chamberlin, M. Arch. Biochem. Biophys. 182, 404–408 (1977).

    Article  CAS  Google Scholar 

  41. Mangel, W. & Chamberlin, M. J. biol. Chem. 249, 2995–3001 (1974).

    CAS  PubMed  Google Scholar 

  42. Kleinschmidt, A. K. in Methods in Enzymology Vol. XIIB (eds Colowick, S. P. & Kaplan, N. L.) 361–377 (Academic, New York, 1968).

    Google Scholar 

  43. Szybalski, W. & Szybalski, E. H. in Procedures in Nucleic Acid Research Vol. 2 (eds Cantoni, G. L. & Davies, D. R.) 311–354 (Harper and Row, New York, 1971).

    Google Scholar 

  44. Vinograd, J. & Hearst, J. Prog. Chem. Org. nat. Prod. Vol. 20 (ed. Zechmeister, J.) 373–422 (Springer, Vienna, 1962).

    Google Scholar 

  45. Crawford, L. V. et al. Proc. natn. Acad. Sci. U.S.A. 75, 117–121 (1978).

    Article  ADS  CAS  Google Scholar 

  46. Berk, A. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 75, 1274–1278 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, P., Woodward, R. & Lebowitz, J. E. coli RNA polymerase promoters on superhelical SV40 DNA are highly selective targets for chemical modification. Nature 284, 640–644 (1980). https://doi.org/10.1038/284640a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/284640a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing