Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular dynamics of ferrocytochrome c

Abstract

The cytochromes c function as single-electron carriers in the mitochondrial electron transport chain1,2. The native structures of the proteins from different species are quite similar1,2, as are the structures of the reduced and oxidized forms3,4. The 103-residue polypeptide chain of tuna cytochrome c contains 5 α-helical segments (residues 2–13, 50–54, 61–69, 71–74, 89–100); the haem group is almost completely buried in a hydrophobic pocket and is covalently bonded to the polypeptide chain by thioether linkages involving Cys 14 and Cys 17 and by linkages to the iron involving His 18 and Met 80 (refs 1–3). NMR5,6 and hydrogen exchange7,8 studies indicate significant internal mobility in cytochrome c. In spite of the apparent similarity of the time-average structures of the reduced and oxidized proteins, the structural fluctuations are significantly larger in the latter form2,7,8. It has been suggested that the internal motions have a role in the electron transfer mechanism2,9. A 16-ps computer simulation10–14 of the atomic motions in reduced tuna cytochrome c has now been completed; this reveals various correlations between the magnitudes of the atomic position fluctuations and the structural features of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dickerson, R. E. & Timkovich, R. in The Enzymes, 11, 3rd edn, Ch. 7 (Academic, New York, 1975).

    Google Scholar 

  2. Salemme, F. R. A. Rev. Biochem. 46, 299–329 (1977).

    Article  CAS  Google Scholar 

  3. Mandel, N. et al. J. biol. Chem. 252, 4619–4636 (1977).

    CAS  PubMed  Google Scholar 

  4. Labhardt, A. & Yuen, C. Nature 277, 150–151 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Campbell, I. D. et al. FEBS Lett. 70, 96–100 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Cookson, D. J. et al. Eur. J. Biochem. 83, 261–275 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Ulmer, D. D. & Kägi, J. H. R. Biochemistry 7, 2710–2717 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Patel, D. J. & Canuel, L. L. Proc. natn. Acad. Sci. U.S.A. 73, 1398–1402 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Hopfield, J.J. Proc. natn. Acad. Sci. U.S.A. 71, 3640–3644 (1974).

    Article  ADS  CAS  Google Scholar 

  10. McCammon, J. A., Wolynes, P. G. & Karplus, M. Biochemistry 18, 927–942 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Karplus, M. & McCammon, J. A. CRC Cr. Rev. Biochem. (in the press).

  12. McCammon, J. A. & Karplus, M. A. Rev. phys. Chem. (in the press).

  13. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585–590 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Karplus, M. & McCammon, J. A. Nature 277, 578 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Linder, B. Adv. chem. Phys. 12, 225–282 (1967).

    CAS  Google Scholar 

  16. Takano, T. et al. J. biol. Chem. 252, 776–785 (1977).

    CAS  PubMed  Google Scholar 

  17. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Levitt, M. J. molec. Biol. 82, 393–420 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Richards, F. M. A. Rev. Biophys. Bioengng 6, 151–176 (1977).

    Article  CAS  Google Scholar 

  20. Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. Nature 280, 558–563 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Artymiuk, P. J. et al. Nature 280, 563–568 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northrup, S., Pear, M., McCammon, J. et al. Molecular dynamics of ferrocytochrome c. Nature 286, 304–305 (1980). https://doi.org/10.1038/286304a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/286304a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing