Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage clamp discloses slow inward current in hippocampal burst-firing neurones

Abstract

Hippocampal pyramidal cells, among the most-studied cortical neurones, display several interesting properties. In particular, intracellular recordings in both in vivo1 and in vitro2 preparations have shown that the pyramidal neurones of the CA3 region of the hippocampus have, in addition to the more conventional single spike, the capacity to generate spontaneous bursts of action potentials (APs). The burst-firing patterns have been well documented, but their underlying electrophysiological mechanisms are not completely understood. The bursts seem to be an intrinsic response of individual neurones and can be triggered by weak orthodromic stimulation or by direct depolarization of the somatic membrane. In molluscan and spinal systems, voltage-clamp techniques have revealed slow, voltage-sensitive, inward currents underlying this type of firing behaviour3–7. The use of these voltage-clamp techniques to study this phenomenon in hippocampal neurones has previously been precluded by the small size of the neurones and by the difficulty of recording from them in intact preparations. However, the development of methodology for voltage-clamping with a single microelectrode (SEC)8 and for the maintenance of hippocampal slices in vitro9 has made it possible for us to examine the membrane currents in these CA3 neurones. We report here a slow inward current in CA3 neurones and suggest that it is carried by calcium ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).

    Article  CAS  Google Scholar 

  2. Wong, R. K. S. & Prince, D. A. Brain Res. 159, 385–390 (1978).

    Article  CAS  Google Scholar 

  3. Wilson, W. A. & Wachtel, H. Science 186, 932–934 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Eckert, R. & Lux, H. D. J. Physiol., Lond. 254, 129–152 (1976).

    Article  CAS  Google Scholar 

  5. Johnston, D. Brain Res. 107, 418–423 (1976).

    Article  CAS  Google Scholar 

  6. Partridge, L. D., Thompson, S. H., Smith, S. J. & Connor, J. A. Brain Res. 164, 69–79 (1979).

    Article  CAS  Google Scholar 

  7. Schwindt, P. C. & Crill, W. E. Brain Res. 120, 173–178 (1977).

    Article  CAS  Google Scholar 

  8. Wilson, W. A. & Goldner, M. M. J. Neurobiol. 6, 411–422 (1975).

    Article  CAS  Google Scholar 

  9. Schwartzkroin, P. A. Brain Res. 85, 423–436 (1975).

    Article  CAS  Google Scholar 

  10. Schwartzkroin, P. A. Brain Res. 128, 53–68 (1977).

    Article  CAS  Google Scholar 

  11. Johnston, D. Biophys. J. 25, 304a (1979).

    Google Scholar 

  12. Sperelakis, N., Schneider, M. F. & Harris, E. J. J. gen. Physiol. 50, 1565–1583 (1967).

    Article  CAS  Google Scholar 

  13. Magura, I. S. J. Membrane Biol. 35, 239–256 (1977).

    Article  CAS  Google Scholar 

  14. Hagiwara, S. in Membranes—A Series of Advances Vol. 3 (ed. Eisenman, G.) 359–381 (Dekker, New York, 1975).

    Google Scholar 

  15. Akaike, N., Lee, K. S. & Brown, A. M. J. gen. Physiol. 71, 509–531 (1978).

    Article  CAS  Google Scholar 

  16. Tillotson, D. Proc. natn. Acad. Sci. U.S.A. 76, 1497–1500 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Rall, W. Biophys. J. 9, 1483–1508 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Thompson, S. H. J. Physiol., Lond. 265, 465–488 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, D., Hablitz, J. & Wilson, W. Voltage clamp discloses slow inward current in hippocampal burst-firing neurones. Nature 286, 391–393 (1980). https://doi.org/10.1038/286391a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/286391a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing