Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extremely relativistic electron–positron twin-jets form extragalactic radio sources

Abstract

The extended extragalactic double radio sources—quasars, BL Lac-type-objects (blazars), and radio galaxies—are commonly interpreted as synchrotron sources in which extremely relativistic electrons gyrate in enhanced magnetic fields. The detection of narrow emission bridges between hot spots inside these sources and the centre of an intermediate galaxy has strongly favoured the existence of a continuous power-line feeding the extended source1,3,5. Such beams may be a universal phenomenon occurring in many—if not all—massive galaxies, including our own4. But whereas early interpretations involved low-frequency electromagnetic waves and/or relativistic particle beams, more recent work favoured non-relativistic (β <10−1) (refs 3, 6–8), or mildly relativistic (γ <10) (refs 9–11) bulk velocities for the power supply. In particular, non-relativistic bulk velocities c β have been derived from estimates of the involved kinetic energy densities u and mass densities ρ in the form β(2u/ρ)1/2. This can lead to large underestimates of β when ρ is derived from Faraday rotation and depolarization data, because the observed jets are likely to have a two-fluid structure, with light relativistic plasma streaming inside of heavy ‘walls’ of thermal matter, or traversing ‘swarms’ of heavy quasistatic filaments12. We suggest here that these beams consist of extremely relativistic electrons and positrons, of typical Lorentz factor γ 102.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Butcher, H. R., Van Breugel, W. & Miley, G. K. Astrophys. J. 235, 749 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Dufour, R. J. & Van den Bergh, S. Astrophys. J. 226, L73 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Schreier, E. J. et al. Astrophys. J. 234, L39 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Burton, W. B. & Liszt, H. S. Astrophys. J. 225, 815; 226, 790 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Rees, M. J. Nature 275, 516 (1978).

    Article  ADS  Google Scholar 

  6. Blandford, R. D. & Icke, V. Mon. Not. R. astr. Soc. 185, 527 (1978).

    Article  ADS  Google Scholar 

  7. Begelman, M. C., Rees, M. J. & Blandford, R. D. Nature 279, 770 (1979).

    Article  ADS  Google Scholar 

  8. Perley, R. A., Willis, A. G. & Scott, J. S. Nature 281, 437 (1979).

    Article  ADS  Google Scholar 

  9. Scheuer, P. A. G. & Readhead, A. C. S. Nature 277, 182 (1979).

    Article  ADS  Google Scholar 

  10. Blandford, R. D. & Königl, A. Astrophys. Lett. 20, 15 (1979).

    ADS  Google Scholar 

  11. Blandford, R. D. & Königl, A. Astrophys. J. 232, 34 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Kundt, W. & Gopal-Krishna Astrophys. Space Sci. (submitted).

  13. Kundt, W. Astrophys. Space Sci. 62, 335 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Bridle, A. H. & Fomalont, E. B. Astr. J. 84, 1679 (1979).

    Article  ADS  Google Scholar 

  15. Longair, M. S. & Riley, J. M. Mon. Not. R. astr. Soc. 188, 625 (1979).

    Article  ADS  Google Scholar 

  16. Banhatti, D. G. Astr. Astrophys. 84, 112 (1980).

    ADS  Google Scholar 

  17. Landau, L. D. & Lifshitz, E. M. VI (1966).

  18. Gopal-Krishna & Swarup, G. Mon. Not. R. astr. Soc. 178, 265 (1977).

    Article  ADS  Google Scholar 

  19. Simkin, S. M. Astrophys. J. Lett. 222, L55 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Cotton, W. D. et al. Astrophys. J. Lett. 229, L115 (1979).

    Article  ADS  Google Scholar 

  21. Pauliny-Toth, I. 5th European Regional IAU Meet., Liège (1980).

  22. Blandford, R. D., McKee, C. F. & Rees, M. J. Nature 267, 211 (1977).

    Article  ADS  Google Scholar 

  23. Reich, W., Stute, U., Reif, K., Kalberla, P. M. W. & Kronberg, P. P. Astrophys. J. Lett. 236, L61 (1980).

    Article  ADS  Google Scholar 

  24. Kundt, W. & Krotscheck, E. Astr. Astrophys. 83, 1 (1980).

    ADS  CAS  Google Scholar 

  25. Kundt, W. An. N.Y. Acad. Sci. 336, 429 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Leventhal, M., Mac Callum, C. J. & Stang, P. D. Astrophys. J. 225, L11 (1978).

    Article  ADS  Google Scholar 

  27. Noerdlinger, P. D. Phys. Rev. Lett. 41, 135 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundt, W., Gopal-Krishna Extremely relativistic electron–positron twin-jets form extragalactic radio sources. Nature 288, 149–150 (1980). https://doi.org/10.1038/288149a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/288149a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing