Abstract
The enzyme complex nitrogenase, which reduces N2 to NH4+, involves two redox proteins, both irreversibly damaged by O2 (ref. 1). Enzyme activity therefore requires anaerobic conditions, a source of reductant and a large amount of ATP (∼16 ATPs per N2)2,3. In both aerobic and facultative anaerobic N2-fixing bacteria, nitrogenase synthesis is regulated by O2 and NH4+, but in the aerobes there are also processes to protect the enzyme from O2 damage4,5. The mechanisms of repression by O2 and NH4+ seem to be independent in the organisms so far examined6–8. In the facultative anaerobe, Klebsiella pneumoniae, O2 was shown to repress nitrogenase synthesis in an NH4+-constitutive strain8. The fusion of the Escherichia coli lacZ gene into each transcriptional unit of the nitrogen fixation (nif) gene cluster in K. pneumoniae has facilitated studies with O2, because expression from the various nif promoters results in an O2-stable product (β-galactosidase). Notably, the nifHDK operon (the nitrogenase structural genes) was more sensitive to O2 repression than the nifLA operon (regulatory genes)9. The characterization of mutants, reported here, indicates the involvement of a nif-regulatory gene product in the mechanism of O2 control of nitrogenase synthesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eady, R. R. & Postgate, J. R. Nature 249, 805–810 (1974).
Ljones, T FEBS Lett. 98, 1–8 (1979).
Andersen, K., Shanmugam, K. T. & Valentine, R. C. in Genetic Engineering for Nitrogen Fixation (ed. Hollaender, A.) 95–110 (Plenum, New York, 1977).
Kennedy, C. & Eady, R. R. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 73–84 (Academic, London, 1979).
Robson, R. L. & Postgate, J. R. A. Rev. Microbiol. 34, 183–207 (1980).
Postgate, J. R. et al. in Biological Metabolism of Inorganic Nitrogen and Sulfur Compounds (eds Bothe, H. & Trebst, A.) 103–115 (Springer, Heidelberg, in the press).
Bergersen, F. J., Turner, G. L., Gibson, A. H. & Dudman, W. F. Biochim. biophys. Acta 444, 164–174 (1976).
Eady, R. R., Issack, R., Kennedy, C., Postgate, J. R. & Ratcliffe, H. J. gen. Microbiol. 104, 277–285 (1978).
Dixon, R. et al. Nature 286, 128–132 (1980).
MacNeil, T., MacNeil, D., Roberts, G. P., Supiano, M. A. & Brill, W. J. J. Bact. 136, 253–266 (1978).
Kennedy, C. Molec. gen. Genet. 157, 199–204 (1977).
Hill, S. J. gen. Microbiol. 93, 335–345 (1976).
Ausubel, F., Riedel, G., Cannon, F., Peskin, A. & Margolskee, R. in Genetic Engineering for Nitrogen Fixation (ed. Hollaender, A.) 111–128 (Plenum, New York, 1977).
Leonardo, J. M. & Goldberg, R. B. J. Bact. 142, 99–110 (1980).
Pichinoty, F. Biochim. biophys. Acta 64, 111–119 (1962).
Spencer, M. E. & Guest, J. R. J. Bact. 114, 563–570 (1973).
Harrison, D. E. F. Adv. microb. Physiol. 14, 243–314 (1976).
Fimmel, A. L. & Haddock, B. A. J. Bact. 138, 726–730 (1979).
Goldberg, R. B. & Hanau, R. J. Bact. 141, 745–750 (1980).
Cassadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U. S. A. 76, 4530–4533 (1979).
Cassadaban, M. J., Chou, J. & Cohen, S. N. J. Bact. 143, 971–980 (1980).
Cannon, F. C., Dixon, R. A., Postgate, J. R. & Primrose, S. B. J. gen. Microbiol. 80, 227–239 (1974).
Puhler, A. & Klipp, W. in Biological Metabolism of Inorganic Nitrogen and Sulfur Compounds (eds Bothe, H. & Trebst, A.) (Springer, Heidelberg, in the press).
Merrick, M. et al. J. gen. Microbiol. 117, 509–520 (1980).
Ausubel, F. M., Margolskee, R. F. & Maizels, N. in Recent Developments in Nitrogen Fixation (eds Newton, W., Postgate, J. R. & Rodriguez-Barrueco, C.) 347–356 (Academic, London, 1977).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hill, S., Kennedy, C., Kavanagh, E. et al. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. peumoniae. Nature 290, 424–426 (1981). https://doi.org/10.1038/290424a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/290424a0
This article is cited by
-
Control of nitrogen fixation in bacteria that associate with cereals
Nature Microbiology (2019)
-
NifL, an antagonistic regulator of NifA interacting with NifA
Science in China Series C: Life Sciences (1998)
-
Transcription termination within the regulatorynifLA operon ofKlebsiella pneumoniae
Molecular and General Genetics MGG (1996)
-
Characterisation of mutations in the Klebsiella pneumoniae nitrogen fixation regulatory gene nifL which impair oxygen regulation
Archives of Microbiology (1993)
-
Transcription of the Azospirillum brasilense nifH gene is positively regulated by NifA and NtrA and is negatively controlled by the cellular nitrogen status
Molecular and General Genetics MGG (1992)