Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. peumoniae

Abstract

The enzyme complex nitrogenase, which reduces N2 to NH4+, involves two redox proteins, both irreversibly damaged by O2 (ref. 1). Enzyme activity therefore requires anaerobic conditions, a source of reductant and a large amount of ATP (16 ATPs per N2)2,3. In both aerobic and facultative anaerobic N2-fixing bacteria, nitrogenase synthesis is regulated by O2 and NH4+, but in the aerobes there are also processes to protect the enzyme from O2 damage4,5. The mechanisms of repression by O2 and NH4+ seem to be independent in the organisms so far examined6–8. In the facultative anaerobe, Klebsiella pneumoniae, O2 was shown to repress nitrogenase synthesis in an NH4+-constitutive strain8. The fusion of the Escherichia coli lacZ gene into each transcriptional unit of the nitrogen fixation (nif) gene cluster in K. pneumoniae has facilitated studies with O2, because expression from the various nif promoters results in an O2-stable product (β-galactosidase). Notably, the nifHDK operon (the nitrogenase structural genes) was more sensitive to O2 repression than the nifLA operon (regulatory genes)9. The characterization of mutants, reported here, indicates the involvement of a nif-regulatory gene product in the mechanism of O2 control of nitrogenase synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eady, R. R. & Postgate, J. R. Nature 249, 805–810 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ljones, T FEBS Lett. 98, 1–8 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Andersen, K., Shanmugam, K. T. & Valentine, R. C. in Genetic Engineering for Nitrogen Fixation (ed. Hollaender, A.) 95–110 (Plenum, New York, 1977).

    Book  Google Scholar 

  4. Kennedy, C. & Eady, R. R. in Nitrogen Assimilation of Plants (eds Hewitt, E. J. & Cutting, C. V.) 73–84 (Academic, London, 1979).

    Google Scholar 

  5. Robson, R. L. & Postgate, J. R. A. Rev. Microbiol. 34, 183–207 (1980).

    Article  CAS  Google Scholar 

  6. Postgate, J. R. et al. in Biological Metabolism of Inorganic Nitrogen and Sulfur Compounds (eds Bothe, H. & Trebst, A.) 103–115 (Springer, Heidelberg, in the press).

  7. Bergersen, F. J., Turner, G. L., Gibson, A. H. & Dudman, W. F. Biochim. biophys. Acta 444, 164–174 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Eady, R. R., Issack, R., Kennedy, C., Postgate, J. R. & Ratcliffe, H. J. gen. Microbiol. 104, 277–285 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Dixon, R. et al. Nature 286, 128–132 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. MacNeil, T., MacNeil, D., Roberts, G. P., Supiano, M. A. & Brill, W. J. J. Bact. 136, 253–266 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kennedy, C. Molec. gen. Genet. 157, 199–204 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Hill, S. J. gen. Microbiol. 93, 335–345 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Ausubel, F., Riedel, G., Cannon, F., Peskin, A. & Margolskee, R. in Genetic Engineering for Nitrogen Fixation (ed. Hollaender, A.) 111–128 (Plenum, New York, 1977).

    Book  Google Scholar 

  14. Leonardo, J. M. & Goldberg, R. B. J. Bact. 142, 99–110 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pichinoty, F. Biochim. biophys. Acta 64, 111–119 (1962).

    Article  CAS  PubMed  Google Scholar 

  16. Spencer, M. E. & Guest, J. R. J. Bact. 114, 563–570 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison, D. E. F. Adv. microb. Physiol. 14, 243–314 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Fimmel, A. L. & Haddock, B. A. J. Bact. 138, 726–730 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg, R. B. & Hanau, R. J. Bact. 141, 745–750 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cassadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U. S. A. 76, 4530–4533 (1979).

    Article  ADS  Google Scholar 

  21. Cassadaban, M. J., Chou, J. & Cohen, S. N. J. Bact. 143, 971–980 (1980).

    Google Scholar 

  22. Cannon, F. C., Dixon, R. A., Postgate, J. R. & Primrose, S. B. J. gen. Microbiol. 80, 227–239 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. Puhler, A. & Klipp, W. in Biological Metabolism of Inorganic Nitrogen and Sulfur Compounds (eds Bothe, H. & Trebst, A.) (Springer, Heidelberg, in the press).

  24. Merrick, M. et al. J. gen. Microbiol. 117, 509–520 (1980).

    CAS  PubMed  Google Scholar 

  25. Ausubel, F. M., Margolskee, R. F. & Maizels, N. in Recent Developments in Nitrogen Fixation (eds Newton, W., Postgate, J. R. & Rodriguez-Barrueco, C.) 347–356 (Academic, London, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, S., Kennedy, C., Kavanagh, E. et al. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. peumoniae. Nature 290, 424–426 (1981). https://doi.org/10.1038/290424a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/290424a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing