Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scale of body pattern adjusts to available cell number in amphibian embryos

An Erratum to this article was published on 28 May 1981

Abstract

In many embryos, the removal of cells whose descendants would normally have formed entire parts of the body pattern Is followed by apparently normal morphogenesis, which implies an ordered readjustment of the activities of the remaining cells before their potentialities become restricted. Special cell lineages cannot underly the generation and regulation of pattern in such embryos1,2. It is proposed instead that there must be some regulatory communication system in the developing embryo that normally ensures an appropriate spatial pattern of differentiation but which is also able to adjust to the removal, addition or transposition of material at a sufficiently early stage3–6. Precise models for such a mechanism have recently been suggested6–10, and have been tested experimentally10–14. I have performed surgical manipulations at pre-gastrula embryonic stages in two distantly related amphibian types, Xenopus and Ambystoma, and report here an assessment of the regulation achieved in terms of pattern proportions. The results are problematical for most current theories of pattern control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dan-Sohkawa, M. & Sato, N. J. Embryol. exp. Morph. 46, 171–185 (1978).

    CAS  Google Scholar 

  2. Cooke, J. J. Embryol. exp. Morph. 51, 165–182 (1979).

    CAS  PubMed  Google Scholar 

  3. Driesch, H. The Science and Philosophy of the Organism, 2nd edn (Black, London, 1929).

    Google Scholar 

  4. Weiss, P. Q. Rev. Biol. 15, 177–198 (1950).

    Article  Google Scholar 

  5. Waddington, C. H. J. exp. Biol. 15, 377–381 (1938).

    Google Scholar 

  6. Wolpert, L. J. theor. Biol. 25, 1–48 (1969).

    Article  CAS  Google Scholar 

  7. Goodwin, B. C. & Cohen, M. H. J. theor. Biol. 25, 49–107 (1969).

    Article  CAS  Google Scholar 

  8. Gierer, A. & Meinhardt, H. Kybernetik 12, 30–39 (1972).

    Article  CAS  Google Scholar 

  9. Meinhardt, H. Rev. physiol. biochem. Pharmac. 80, 47–104 (1978).

    CAS  Google Scholar 

  10. Tickle, C., Summerbell, D. & Wolpert, L. Nature 254, 199–202 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Wolpert, L., Clarke, M. R. B. & Hornbruch, A. Nature 239, 101–105 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Summerbell, D. J. Embryol. exp. Morph. 50, 217–233 (1979).

    CAS  Google Scholar 

  13. Cooke, J. J. Embryol. exp. Morph. 28, 13–26, 27–46, 47–56 (1972); 30, 283–300 (1973).

    CAS  PubMed  Google Scholar 

  14. Herth, W. & Sander, K. Arch. EntwMech. Org. 172, 1–27 (1973).

    Article  CAS  Google Scholar 

  15. Forman, D. & Slack, J. M. W. Nature 286, 492–494 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Keller, R. E. Devl. Biol. 51, 118–137 (1976).

    Article  CAS  Google Scholar 

  17. Spemann, H. & Mangold, H. Arch. microsk. Anat. EntwMech. 100, 599–638 (1924).

    Google Scholar 

  18. Summerbell, D. & Wolpert, L. Nature 244, 228–229 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Sibatani, A. J. theor. Biol. 75, 149–166 (1978).

    Article  CAS  Google Scholar 

  20. Papageorgiou, S. Biophys. Chem. 11, 183–198 (1980).

    Article  CAS  Google Scholar 

  21. Cooke, J. Am. Zool. (in the press).

  22. Rose, S. M. Growth 31, 149–164.

  23. Meinhardt, H. & Gierer, A. J. theor. Biol. 85, 429–450 (1980).

    Article  CAS  Google Scholar 

  24. Cooke, J. Nature 254, 196–199 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, J. Scale of body pattern adjusts to available cell number in amphibian embryos. Nature 290, 775–778 (1981). https://doi.org/10.1038/290775a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/290775a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing