Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binary mixing in ocean-ridge spreading segments

Abstract

Compositional mixing trends in eruptive mid-ocean ridge basalt (MORB) seem to be confined to short time–space intervals, possibly corresponding to single fracture-zone-bounded segments of a spreading ridge axis. Binary mixing is discernible from the variation in Ta, Hf, Rb, Sr and rare earth elements (REEs), and may be interpreted as reflecting dual mantle sources for locally-defined units of the axis or associated transform fracture zones. These sources reflect contrasting degrees and types of incompatible (or ‘low-KD’) element enrichment relative to a ‘normal’ MORB source characterized by uniform depletion in these elements. Enrichment in low-KD elements, radiogenic isotopes and normative nepheline has long been recognized in some fracture zone magmas1–4 and it is important to speculate on the possible influence of fracture zones on the chemical character of spreading axes. Consideration of chemical and isotopic variation at a single Atlantic spreading segment (36–37 °N) in a regional context suggests that transform fracture zones may be instrumental in both generating compositional heterogeneity in the mantle and permitting its expression in eruptive crust. It is proposed here that hybridization of ‘enriched’ fracture zone-derived melt and less-enriched or depleted rift-derived melt occurs in sub-axial magma supply systems during an active spreading phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bonatti, E., Chermak, A. & Honnorez, J. 2nd Ewing Ser. (eds. Talwani, M., Harrison, C. G. & Hayes, D. E.) (American Geophysical Union, 1979).

    Google Scholar 

  2. Shibata, T., Thompson, G. & Frey, F. A. Contr. Miner. Petrol. 70, 127–141 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Bonatti, E. & Hamlyn, P. R. Science 201, 249–251 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Batiza, R. & Johnson, J. R. Init. Rep. DSDP 54 (in the press).

  5. Needham, H. D. & Francheteau, J. Earth planet. Sci. Lett. 35, 30–42 (1974).

    Google Scholar 

  6. Hekinian, R., Moore, J. G. & Bryan, W. B. Contr. Miner. Petrol. 58, 83–110 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Ballard, R. D. et al. EOS Union 59, 1198–1199 (1978).

    Google Scholar 

  8. Aumento, F. et al. Init. Rep. DSDP Leg 37 (1977).

  9. Init. Rep. DSDP Legs 45, 46, 51–53 (1979–80).

  10. Langmuir, C. H. et al. Earth, planet. Sci. Lett. 36, 133–156 (1978).

    Article  ADS  Google Scholar 

  11. Flower, M. F. J. et al. Contr. Miner. Petrol. 64, 167–195 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Bougault, H. et al. Tectonophysics 55, 11–34 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Schilling, J. G., Kingsley, R. & Bergeron, M. Init. Rep. DSDP Leg 37, 591–598 (1977).

    CAS  Google Scholar 

  14. Schilling, J. G. Earth planet. Sci. Lett. 25, 103–115 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Flower, M. F. J. Lithos (submitted).

  16. Bryan, W. B., Thompson, G. & Michael, P. J. Tectonophysics 55, 63–85 (1979).

    Article  ADS  CAS  Google Scholar 

  17. O'Hara, M. J. Nature 266, 503–507 (1977).

    Article  ADS  CAS  Google Scholar 

  18. White, W. W. Yb. Carnegie Instn Wash. 78, 325–331 (1979).

    Google Scholar 

  19. Fowler, C. M. R. Geophys. J.R. astr. Soc. 47, 459–591 (1976).

    Article  ADS  Google Scholar 

  20. Steinmetz, L., Whitmarsh, R. & Moreira, V. Geophys. J.R. astr. Soc. 50, 353–380 (1977).

    Article  ADS  Google Scholar 

  21. Flower, M. F. J. Nature 287, 530–532 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Hofmann, A. W., White, W. M. & Whitford, D. J. Yb. Carnegie Instn Wash. 77, 548–562 (1978).

    Google Scholar 

  23. Zindler, A. et al. Earth planet. Sci. Lett. 45, 249–262 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Sleep, N. H. J. geophys. Res. 80, 4037–4042 (1975).

    Article  ADS  Google Scholar 

  25. Kuznir, N. J. & Bott, M. H. P. Geophys. J.R. astr. Soc. 47, 83–95 (1976).

    Article  ADS  Google Scholar 

  26. Bottinga, J. & Allégre, C. J. Phil. Trans. R. Soc. A288, 501–525 (1979).

    Article  ADS  Google Scholar 

  27. Rhodes, J. M. & Dungan, M. A. in 2nd Ewing Ser. (eds Talwani, M., Harrison, C. G., Hayes, D. E.) 262‐272 American Geophysical Union, 1979).

    Google Scholar 

  28. Schilling, J. G. & Sigurdson, H. Nature 282, 370–375 (1980).

    Article  ADS  Google Scholar 

  29. Vogt, P. R. Earth planet. Sci. Lett. 29, 309–325 (1976).

    Article  ADS  Google Scholar 

  30. Bjornsson, A. et al. Nature 266, 318–322 (1978).

    Article  ADS  Google Scholar 

  31. Langmuir, C. H. et al. Earth planet. Sci. Lett. 37, 380 (1978).

    Article  ADS  CAS  Google Scholar 

  32. O'Nions, R. K., Hamilton, P. J. & Evensen, N. M. Earth planet. Sci. Lett. 34, 13–32 (1977).

    Article  ADS  CAS  Google Scholar 

  33. Forsyth, D. W. Tectonophysics 38, 89–118 (1977).

    Article  ADS  Google Scholar 

  34. Menzies, M. & Rama-Murthy, V. Earth planet. Sci. Lett. 46, 323–334 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Wood, D. A. Geology 7, 499–503 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Blanchard, D. P. et al. J. geophys. Res. 81, 4231–4246 (1976).

    Article  ADS  CAS  Google Scholar 

  37. White, W. M., Tapia, M. D. M. & Schilling, J. G. Contr. Miner. Petrol. 69, 201–213 (1979).

    Article  ADS  CAS  Google Scholar 

  38. Hawkesworth, C. et al. Nature 280, 28–31 (1979).

    Article  ADS  CAS  Google Scholar 

  39. Jahn, B. M. et al. Earth planet. Sci. Lett. 48, 171–184 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flower, M. Binary mixing in ocean-ridge spreading segments. Nature 292, 45–47 (1981). https://doi.org/10.1038/292045a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/292045a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing