Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite

Abstract

The Tieschitz H3 chondrite contains 0.25% bulk carbon1 but concentrations of as much as 2–6% (ref. 2) occur in black, 10–20 µm-wide rims around chondrules that are thought to have accreted before the agglomeration of the stone2–5. These rims are extremely fine-grained and compact, the main constituent being an iron-rich olivine (Fa 60–65) as shown by a Debye–Sherrer X-ray diffractogram, in good agreement with the FeO/FeO + MgO matrix value2,6. To further our understanding of the rim composition and of the thermal history of the stone, we used the MOLE Raman laser microprobe7 to characterize the carbon constituent. We report here that it is a highly disordered graphite with a progressive ordering as shown by samples heated to temperatures between 300 and 600 °C. Tieschitz could not have been heated to more than 300–350 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Otting, W. & Zahringer, J. Geochim. cosmochim. Acta 31, 1949–1960 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Kurat, G. Earth planet. Sci. Lett. 7, 317–324 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Christophe, M. Earth Planet Sci. Lett. 30, 143–150 (1976).

    Article  Google Scholar 

  4. Hutchison, R., Bevan, A. W., Agrell, S. O. & Ashworth, J. R. Nature 280, 116–119, (1979).

    Article  ADS  CAS  Google Scholar 

  5. Ashworth, J. R. Proc. R. Soc. A 374, 179–194. (1981).

    Article  ADS  Google Scholar 

  6. Huss, G. R., Keil, K. & Taylor, G. J. Meteoritics 13, 495–497 (1978).

    ADS  CAS  Google Scholar 

  7. Dhamelincourt, P. thesis, Univ. Lille (1979).

  8. Tuinst, F. & Koenig, J. L. J. chem. Phys. 53, 1126–1130 (1970).

    Article  ADS  Google Scholar 

  9. Sato, Y., Kamo, M. & Setaha, N. Carbon 16, 279–280 (1978).

    Article  CAS  Google Scholar 

  10. Vidano, R. & Fischbach, D. B. J. Am. ceram. Soc. 61, 13–17 (1978).

    Article  CAS  Google Scholar 

  11. Hayatsu, R., Scott, R. G., Studier, H., Lewis, R. S. & Anders, E. Science 209, 1515–1517. (1980).

    Article  ADS  CAS  Google Scholar 

  12. Whittaker, A. G., Watts, E. J., Lewis, R. S. & Anders, E. Science 209, 1512–1514 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Smith, P. P.K. & Buseck, P. R. 12th Lumar planet. Sci. Conf. 1017–1019 (1981).

  14. Bevan, A. W. R. & Axon, H. J. Earth planet. Sci. Lett. 47, 353–60 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Clarke, R. S. Jr & Scott, E. R. D. Am. Miner. 65, 624–630 (1980).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel-Levy, M., Lautie, A. Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite. Nature 292, 321–322 (1981). https://doi.org/10.1038/292321a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/292321a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing