Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Methionyl-tRNA synthetase shows the nucleotide binding fold observed in dehydrogenases

Abstract

A striking common structural feature has emerged from the comparison of the X-ray crystallographic studies of several dehydrogenases. In lactate dehydrogenase1, soluble malate dehydrogenase2, alcohol dehydrogenase3 and glyceraldehyde-3-phosphate dehydrogenase4 similar foldings have been described in the region which binds the coenzyme NAD, whereas no significant similarities were observed in the chemical sequences. The occurrence of a characteristic ‘nucleotide binding fold’ (the so-called Rossmann fold) has also been observed in horse muscle phosphoglycerate kinase5, in phosphorylase6,7 and, with some topological deviations, in other kinases8–11 as well as in the flavin-binding domain of flavodoxin12. If one assumes that these structural homologies are the result of a divergent evolutionary process, it is then tempting to predict a similar pattern of structure–function relationship in other nucleotide-binding proteins, in particular in aminoacyl-tRNA synthetases. We show here that methionyl-tRNA synthetase does show the same nucleotide binding fold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rossmann, M. G. et al. Cold Spring Harb. Symp. quant. Biol. 36, 179–191 (1971).

    Article  CAS  Google Scholar 

  2. Hill, E., Tsernoglou, D., Webb, L. & Banaszak, L. J. J. molec. Biol. 72, 577–589 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Eklund, H. et al. J. molec. Biol. 102, 27–59 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. J. molec. Biol. 90, 25–49 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Blake, C. C. F. & Evans, P. R. J. molec. Biol. 84, 585–601 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Fletterick, R. J., Sygusch, J., Semple, H. & Madsen, N. B. J. biol. Chem. 251, 6142–6146 (1976).

    CAS  PubMed  Google Scholar 

  7. Weber, I. T. et al. Nature 274, 433–437 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Evans, P. R. & Hudson, P. J. Nature 279, 500–504 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Schulz, G. E. & Schirmer, R. H. Nature 250, 142–144 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Steitz, T. A., Fletterick, R. J., Anderson, W. F. & Anderson, C. M. J. molec. Biol. 104, 197–222 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Levine, M., Muirhead, H., Stammers, D. K. & Stuart, D. I. Nature 271, 626–630 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Burnett, R. M. et al. J. biol. Chem. 249, 4383–4392 (1974).

    CAS  PubMed  Google Scholar 

  13. Cassio, D. & Waller, J. P. Eur. J. Biochem. 20, 283–300 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Waller, J. P., Risler, J. L., Monteilhet, C. & Zelwer, C. FEBS Lett. 16, 186–188 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Schevitz, R. W., Podjarny, A. D., Zwick, M., Hughes, J. J. & Sigler, P. B. Acta Crystallogr. (in the press).

  16. Irwin, M. J., Nyborg, J., Reid, B. R. & Blow, D. M. J. molec. Biol. 105, 577–586 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Bhat, I. N., Blow, D. M., Brick, P., Monteilhet, C. & Nyborg, J. Abst. EMBO–FEBS tRNA Workshop, Strasbourg, 1980.

  18. Rossmann, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ohlsson, I., Nordström, B. & Bränden, C. I. J. molec. Biol. 89, 339–354 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Calos, M. P. & Miller, J. H. Cell 20, 579–595 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Banner, D. W. et al. Nature 255, 609–614 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risler, J., Zelwer, C. & Brunie, S. Methionyl-tRNA synthetase shows the nucleotide binding fold observed in dehydrogenases. Nature 292, 384–386 (1981). https://doi.org/10.1038/292384a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/292384a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing