Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

recA-independent general genetic recombination of plasmids

Abstract

The small circular genomes of several bacteriophages and a number of plasmids have been used extensively to study various aspects of the mechanism of genetic recombination. Several studies have demonstrated that the interconversion between the circular monomers and larger circular oligomers of many plasmid DNAs is mediated, at least in part, by the pathway which carries out genetic recombination in wild-type Escherichia coli1–4. The recA, recB and recC mutations block conjugation-mediated recombination in E. coli5,6. However, Clark and his co-workers7,8 isolated two mutations, sbcA and sbcB, which indirectly suppress the recombination deficiency of recB and recC mutations. These indirect suppressor mutations seem to cause recombination by other pathways which require the recA gene product as well as products of other genes such as recF, recJ and recM, which are not normally required for recombination in E. coli9,10. Here we report an investigation of the effect of recombination-deficient mutations on plasmid recombination in E. coli. We show that sbcA mutations induce a new plasmid recombination pathway that is 10–15 times more efficient than the normal wild-type recombination pathway and independent of the recA and recF functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hobom, G. & Hogness, D. S. J. molec. Biol. 88, 65–87 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Bedbrook, J. & Ausubel, F. Cell 9, 707–716 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Potter, H. & Dressler, D. Proc. natn. Acad. Sci. U.S.A. 74, 4168–4172 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Kolodner, R., Joseph, J., James, A., Dean, F. & Doherty, M. J. ICN–UCLA Symp. molec. cell. Biol. 19, 933–939 (1980).

    Google Scholar 

  5. Clark, A. J. & Margulies, A. D. Proc. natn. Acad. Sci. U.S.A. 53, 451–459 (1965).

    Article  ADS  CAS  Google Scholar 

  6. Emmerson, P. T. & Howard-Flanders, P. J. Bact. 93, 1729–1731 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbour, S. D., Nagaishi, H., Templin, A. & Clark, A. J. Proc. natn. Acad. Sci. U.S.A. 67, 128–135 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Kushner, S. R., Nagaishi, H. & Clark, A. J. Proc. natn. Acad. Sci. U.S.A. 68, 824–827 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Horii, Z.-I. & Clark, A. J. J. molec. Biol. 80, 327–344 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Clark, A. J. ICN–UCLA Symp. molec. cell. Biol. 19, 891–899 (1980).

    Google Scholar 

  11. Hershfield, V., Boyer, H. W., Chow, L. & Helinski, D. R. J. Bact. 126, 447–453 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. James, A. A., Morrison, P. M. & Kolodner, R. Proc. natn. Acad. Sci. U.S.A. (submitted).

  13. Gordon, C. N., Rush, M. G. & Warner, R. C. J. molec. Biol. 47, 495–503 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, B. J. et al. J. molec. Biol. 91, 409–419 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Thompson, B. J., Camien, M. N. & Warner, R. C. Proc. natn. Acad. Sci. U.S.A. 73, 2299–2303 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Potter, H. & Dressler, D. Proc. natn. Acad. Sci. U.S.A. 73, 3000–3004 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Potter, H. & Dressler, D. Cold Spring Harb. Symp. quant. Biol. 43, 969–989 (1978).

    Article  Google Scholar 

  18. Holliday, R. Genet. Res. 5, 282–304 (1964).

    Article  Google Scholar 

  19. Meselson, M. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Broker, T. R. J. molec. Biol. 81, 1–16 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Tsujimoto, Y. & Ogawa, A. J. molec. Biol. 106, 423–436 (1976).

    Google Scholar 

  22. Bell, L. & Byers, B. Proc. natn. Acad. Sci. U.S.A. 76, 3445–3449 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Wolgemuth, D. J. & Hsu, M.-T. Nature 287, 168–171 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Warner, R. C., Fishel, R. A. & Wheeler, F. C. Cold Spring Harb. Symp. quant. Biol. 43, 957–968 (1978).

    Article  Google Scholar 

  25. Hardies, S. C. et al. J. biol. Chem. 254, 5527–5534 (1979).

    CAS  PubMed  Google Scholar 

  26. Bolivar, F., Rodrigues, R. L., Betlach, M. C. & Boyer, H. W. Gene 2, 75–93 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Luria, S. E. & Delbruck, M. Genetics 28, 491–504 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wake, C. T. & Wilson, J. H. Cell 21, 141–148 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. James, A. A., Morrison, P. M. & Kolodner, R. J. molec. Biol. (submitted).

  30. Gillen, J. R. & Clark, A. J. in Mechanisms of Genetic Recombination (ed. Grell, R. F.) 123–136 (Plenum, New York, 1974).

    Book  Google Scholar 

  31. Gillen, J. R., Willis, D. K. & Clark, A. J. J. Bact. 145, 521–532 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vapnek, D., Alton, N. K., Bassett, C. L. & Kushner, S. R. Proc. natn. Acad. Sci. U.S.A. 73, 3492–3496 (1976).

    Article  ADS  CAS  Google Scholar 

  33. Porter, R. D., McLaughlin, T. & Low, B. Cold Spring Harb. Symp. quant. Biol. 43, 1043–1047.

  34. Stahl, F. W. A. Rev. Genet. 13, 7–24 (1979).

    Article  CAS  Google Scholar 

  35. Barbour, S. D. & Clark, A. J. Proc. natn. Acad. Sci. U.S.A. 65, 955–961 (1970).

    Article  ADS  CAS  Google Scholar 

  36. Goldmark, P. J. & Linn, S. Proc. natn. Acad. Sci. U.S.A. 67, 434–438 (1972).

    Article  ADS  Google Scholar 

  37. Kolodner, R. Proc. natn. Acad. Sci. U.S.A. 77, 4847–4851 (1980).

    Article  ADS  CAS  Google Scholar 

  38. Thuring, R. W. J., Sanders, J. P. M. & Borst, P. Analyt. Biochem. 66, 213–220 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Wensink, P. C., Finnegan, D. J., Donelson, D. J. & Hogness, D. S. Cell 3, 315–325 (1974).

    Article  CAS  PubMed  Google Scholar 

  40. Klein, R. D., Selsing, E. & Wells, R. D. Plasmid 3, 88–91 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishel, R., James, A. & Kolodner, R. recA-independent general genetic recombination of plasmids. Nature 294, 184–186 (1981). https://doi.org/10.1038/294184a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/294184a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing