Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. letters
  3. article
Radiation effects and the leach rates of vitrified radioactive waste
Download PDF
  • Letter
  • Published: 14 January 1982

Radiation effects and the leach rates of vitrified radioactive waste

  • W. G. Burns1,
  • A. E. Hughes1,
  • J. A. C. Marples1,
  • R. S. Nelson1 &
  • …
  • A. M. Stoneham1 

Nature volume 295, pages 130–132 (1982)Cite this article

  • 460 Accesses

  • 33 Citations

  • Metrics details

Abstract

There is much concern that long-lived radioactive elements incorporated in glasses for the disposal of highly active nuclear waste might eventually return to the environment. The most important mechanism begins with leaching of the glass by groundwater and a leach rate, usually based on laboratory tests of simulated vitrified radioactive waste, has been used as the basis of analyses of the radiological safety of a waste repository1–3. The possibility that radiation damage to the glass from the products of nuclear decay could change the leach rate has been studied both by the incorporation of active elements in the glass and by irradiation from external sources. The most important contribution to radiation damage comes from the recoil nuclei during α decay4. Typically the recoil nucleus has a kinetic energy of ∼100 keV and displaces >1,000 atoms in the glass. Experiments which simulate this damage by incorporating short-lived α-emitting isotopes such as 238Pu into the glass have not shown significant increases in leach rate at doses equivalent to >1018 α decays g−1 (refs 5–9). Figure 1 shows that for wastes considered in the UK this corresponds to a time after vitrification of at least 103–104 yr. Recent work with ion beams inducing the radiation damage10–12 has suggested that large increases (up to a factor of just over 50) in leach rate will occur after a critical dose of radiation from the α-decay processes. In addition, experiments in which the leaching solution is irradiated with γ rays13–15 have shown that radiolysis effects in the water can increase the leach rates of glasses. We present here new data and calculations which relate these studies to the conditions expected in a real waste repository. Our analysis is described in more detail elsewhere16,17.

You have full access to this article via your institution.

Download PDF

Similar content being viewed by others

Alpha dose rate and decay dose impacts on the long-term alteration of HLW nuclear glasses

Article Open access 07 July 2021

Alteration of archeological and natural analogs for radioactive waste glass under different environmental conditions

Article Open access 05 August 2025

Influence of radiation on borosilicate glass leaching behaviors

Article Open access 17 January 2024

Article PDF

References

  1. Hill, M. D. & Grimwood, P. D. NRPB Rep. R-69 (National Radiological Protection Board, 1978).

    Google Scholar 

  2. Hill, M. D. NRPB Rep. R-86 (National Radiological Protection Board, 1979).

    Google Scholar 

  3. Hill, M. D. & Lawson, G. NRPB Rep. R-108 (National Radiological Protection Board, 1980).

    Google Scholar 

  4. Permar, P. H. & McDonnell, W. R. in Proc. 10th Symp. on Effects of Radiation on Materials (American Society for Testing and Materials, Philadelphia, in the press) (available from National Technical Information Services CONF 800609-5, and as Dupont Report DP-MS-80-27).

  5. Marples, J. A. C. (ed.) European Res. Rep. No EUR7138 (in the press).

  6. Weber, W. J., Turcotte, R. P., Bunnell, L. R., Roberts, F. P. & Westsik, J. H. in Ceramics in Nuclear Waste Management (eds Chikalla, T. D. & Mendel, J. E.) 294–299 (Technical Information Center, US Dept of Energy, CONF-790420, 1979).

    Google Scholar 

  7. Mendel, J. E. et al. in Management of Radioactive Wastes from the Nuclear Fuel Cycle Vol. 2, 49–61 (IAEA, Vienna, 1976).

    Google Scholar 

  8. Bibler, N. E. & Kelley, J. A. Dupont Rep. DP-1482 (Dupont Savannah River Laboratory, Aiken, 1978).

    Google Scholar 

  9. Scheffler, K. & Riege, U. KfK Rep 2422 (Kernforschungszentrum, Karlsruhe, 1977).

  10. Dran, J. C., Maurette, M. & Petit, J. C. Science 209, 1518–1520 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Dran, J. C., Maurette, M., Petit, J. C. & Vassent, B. in Scientific Basis for Nuclear Waste Management, Vol. 3 (ed. Moore, J. G.) 449–456 (Plenum, New York, 1981).

    Book  Google Scholar 

  12. Hirsch, E. H. Science 209, 1520–1522 (1980).

    Article  ADS  CAS  Google Scholar 

  13. McVay, G. L., Weber, W. J. & Pederson, L. R. ORNL Conf. on Leachability of Radioactive Solids, Gatlinburg (1980).

  14. McVay, G. L. & Buckwalter, C. Q. Nucl. Technol. 51, 123–129 (1980).

    Article  CAS  Google Scholar 

  15. McVay, G. L. & Pederson, L. R. J. Am. ceram. Soc. 64, 154–158 (1981).

    Article  CAS  Google Scholar 

  16. Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S. & Stoneham, A. M. AERE Rep. R-10189 (AERE, Harwell, 1981).

    Google Scholar 

  17. Hughes, A. E., Marples, J. A. C. & Stoneham, A. M. AERE Rep. R-10190 (AERE, Harwell, 1981).

    Google Scholar 

  18. Johnson, W. A., North, J. C. & Wolfe, R. J. appl. Phys. 44, 4753–4757 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Coburn, J. W. J. Vac. Sci. Technol. 13, 1037–1044 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Binkowski, N. J., Heitzenrater, R. F. & Stephenson, D. A. J. Am. ceram. Soc. 59, 153–157 (1976).

    Article  CAS  Google Scholar 

  21. Stephenson, D. A. & Binkowski, N. J. J. Non-Cryst. Solids 22, 399–421 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Wright, J., Linacre, J. K., Marsh, W. R. & Bates, T. H. Proc. Int. Conf. on the Peaceful Uses of Atomic Energy Vol.7, 560–563 (United Nations, New York, 1956).

    CAS  Google Scholar 

  23. Linacre, J. K. & Marsh, W. R. AERE Rep. R-10027 (AERE, Harwell, 1981).

    Google Scholar 

  24. Burns, W. G. & Moore, P. B. Rad. Effects 30, 233–242 (1976).

    Article  CAS  Google Scholar 

  25. Burns, W. G. & Moore, P. B. in Proc. Conf. on Water Chemistry of Nuclear Reactors, 281–289 (British Nuclear Energy Society, London, 1978).

  26. Anbar, M., in Fundamental Processes in Radiation Chemistry (ed. Ausloos, P.) 651–685 (Interscience, New York, 1968).

    Google Scholar 

  27. Appleby, A. & Schwarz, H. A. J. phys. Chem. 73, 1937–1941 (1969).

    Article  CAS  Google Scholar 

  28. Boyd, A. W., Carver, M. B. & Dixon, R. S. Radiat. phys. Chem. 15, 177–185 (1980).

    ADS  CAS  Google Scholar 

  29. Boult, K. A., Dalton, J. T., Hall, A. R., Hough, A. & Marples, J. A. C. AERE Rep. R-9188 (AERE, Harwell, 1978).

    Google Scholar 

  30. Marples, J. A. C., Lutze, W. & Sombret, C. in Radioactive Waste Management and Disposal (eds Simon, R. & Orlowski, S.) 307–323 (Harewood Academic, 1980).

    Google Scholar 

  31. Dollé, J. & Rosenberg, L. in Proc. Conf. on Water Chemistry of Nuclear Reactors, 291–297 (British Nuclear Energy Society, London, 1978).

    Book  Google Scholar 

  32. Rai, D., Strickert, R. G. & Ryan, J. L. Inorg. nucl. Chem. Lett. 16, 551–555 (1980).

    Article  CAS  Google Scholar 

  33. Bradley, D. J., Harvey, C. O. & Turcotte, R. P. PNL Rep. 3152 (Pacific Northwest Laboratory, 1979).

    Google Scholar 

  34. American physical society. Rev. Mod. Phys. 50, S1–S186 (1978).

  35. Hodgkinson, D. P. AERE Rep. M-2997 (AERE, Harwell, 1978).

    Google Scholar 

  36. Chapman, N. A., McInley, I. G. & Savage, D. OECD/NEA Workshop on Radionuclide Release Scenarios for Geologic Repositories, Paris (in the press).

  37. Rimstidt, J .D. & Barnes, H. L. Geochim. cosmochim. Acta 44, 1683–1699 (1980).

    Article  ADS  CAS  Google Scholar 

  38. Rai, D. & Strickert, R. G. Trans. Am. nucl. Soc. Europ. nucl. Soc. 1980 int. Conf. on World Energy: Accomplishments and Perspectives, 185–186 (American Nuclear Society, La Grange Park, Illinois, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Atomic Energy Research Establishment, Harwell, Didcot, Oxon, OX11 0RA, UK

    W. G. Burns, A. E. Hughes, J. A. C. Marples, R. S. Nelson & A. M. Stoneham

Authors
  1. W. G. Burns
    View author publications

    Search author on:PubMed Google Scholar

  2. A. E. Hughes
    View author publications

    Search author on:PubMed Google Scholar

  3. J. A. C. Marples
    View author publications

    Search author on:PubMed Google Scholar

  4. R. S. Nelson
    View author publications

    Search author on:PubMed Google Scholar

  5. A. M. Stoneham
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, W., Hughes, A., Marples, J. et al. Radiation effects and the leach rates of vitrified radioactive waste. Nature 295, 130–132 (1982). https://doi.org/10.1038/295130a0

Download citation

  • Received: 26 August 1981

  • Accepted: 17 November 1981

  • Issue date: 14 January 1982

  • DOI: https://doi.org/10.1038/295130a0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Influence of radiation on borosilicate glass leaching behaviors

    • Kemian Qin
    • Buyun Zhang
    • Haibo Peng

    npj Materials Degradation (2024)

  • Chemical behavior of uranium contaminated soil solidified by microwave sintering

    • Hexi Tang
    • Yaping Li
    • Xirui Lu

    Journal of Radioanalytical and Nuclear Chemistry (2019)

  • Timescale of natural annealing in radioactive minerals affects retardation of radiation-damage-induced leaching

    • Yehuda Eyal
    • Robert L. Fleischer

    Nature (1985)

You have full access to this article via your institution.

Download PDF

Advertisement

Explore content

  • Research articles
  • News
  • Opinion
  • Research Analysis
  • Careers
  • Books & Culture
  • Podcasts
  • Videos
  • Current issue
  • Browse issues
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Staff
  • About the Editors
  • Journal Information
  • Our publishing models
  • Editorial Values Statement
  • Journal Metrics
  • Awards
  • Contact
  • Editorial policies
  • History of Nature
  • Send a news tip

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature (Nature)

ISSN 1476-4687 (online)

ISSN 0028-0836 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing